Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • About Us
    • Overview
      • Spatial and Temporal Design
      • History
    • Vision and Management
    • FAQ
    • Contact Us
      • Contact NEON Biorepository
      • Field Offices
    • User Accounts
    • Staff
    • Code of Conduct

    About Us

  • Data & Samples
    • Data Portal
      • Explore Data Products
      • Data Availability Charts
      • Spatial Data & Maps
      • Document Library
      • API & GraphQL
      • Prototype Data
      • External Lab Data Ingest (restricted)
    • Data Themes
      • Atmosphere
      • Biogeochemistry
      • Ecohydrology
      • Land Cover and Processes
      • Organisms, Populations, and Communities
    • Samples & Specimens
      • Discover and Use NEON Samples
        • Sample Types
        • Sample Repositories
        • Sample Explorer
        • Megapit and Distributed Initial Characterization Soil Archives
      • Sample Processing
      • Sample Quality
      • Taxonomic Lists
    • Collection Methods
      • Protocols & Standardized Methods
      • Airborne Remote Sensing
        • Flight Box Design
        • Flight Schedules and Coverage
        • Daily Flight Reports
          • AOP Flight Report Sign Up
        • Camera
        • Imaging Spectrometer
        • Lidar
      • Automated Instruments
        • Site Level Sampling Design
        • Sensor Collection Frequency
        • Instrumented Collection Types
          • Meteorology
          • Phenocams
          • Soil Sensors
          • Ground Water
          • Surface Water
      • Observational Sampling
        • Site Level Sampling Design
        • Sampling Schedules
        • Observation Types
          • Aquatic Organisms
            • Aquatic Microbes
            • Fish
            • Macroinvertebrates & Zooplankton
            • Periphyton, Phytoplankton, and Aquatic Plants
          • Terrestrial Organisms
            • Birds
            • Ground Beetles
            • Mosquitoes
            • Small Mammals
            • Soil Microbes
            • Terrestrial Plants
            • Ticks
          • Hydrology & Geomorphology
            • Discharge
            • Geomorphology
          • Biogeochemistry
          • DNA Sequences
          • Pathogens
          • Sediments
          • Soils
            • Soil Descriptions
        • Optimizing the Observational Sampling Designs
    • Data Notifications
    • Data Guidelines and Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
      • Usage Policies
    • Data Management
      • Data Availability
      • Data Formats and Conventions
      • Data Processing
      • Data Quality
      • Data Product Bundles
      • Data Product Revisions and Releases
        • Release 2021
        • Release 2022
        • Release 2023
        • Release 2024
        • Release-2025
      • NEON and Google
      • Externally Hosted Data

    Data & Samples

  • Field Sites
    • About Field Sites and Domains
    • Explore Field Sites
    • Site Management Data Product

    Field Sites

  • Impact
    • Observatory Blog
    • Case Studies
    • Papers & Publications
    • Newsroom
      • NEON in the News
      • Newsletter Archive
      • Newsletter Sign Up

    Impact

  • Resources
    • Getting Started with NEON Data & Resources
    • Documents and Communication Resources
      • Papers & Publications
      • Document Library
      • Outreach Materials
    • Code Hub
      • Code Resources Guidelines
      • Code Resources Submission
      • NEON's GitHub Organization Homepage
    • Learning Hub
      • Science Videos
      • Tutorials
      • Workshops & Courses
      • Teaching Modules
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Funding Opportunities

    Resources

  • Get Involved
    • Advisory Groups
      • Science, Technology & Education Advisory Committee (STEAC)
      • Innovation Advisory Committee (IAC)
      • Technical Working Groups (TWG)
    • Upcoming Events
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NEON Science Summit
      • NCAR-NEON-Community Collaborations
        • NCAR-NEON Community Steering Committee
    • Community Engagement
      • How Community Feedback Impacts NEON Operations
    • Science Seminars and Data Skills Webinars
      • Past Years
    • Work Opportunities
      • Careers
      • Seasonal Fieldwork
      • Internships
        • Intern Alumni
    • Partners

    Get Involved

  • My Account
  • Search

Search

2020 SESYNC Pursuit Proposal Deadline

The National Socio-Environmental Synthesis Center (SESYNC) announces its Spring 2020 Request for Proposals for collaborative team-based research projects that synthesize existing data, methods, theories, and tools to address a pressing socio-environmental problem. The request includes a research topic focused on NEON-enabled Socio-Environmental Synthesis. Proposals are due March 30, 2020 at 5 p.m. ET.

Select pixels and compare spectral signatures in R

In this tutorial, we will learn how to plot spectral signatures of several different land cover types using an interactive click feature of the terra package.

Learning Objectives

After completing this activity, you will be able to:

  • Extract and plot spectra from an HDF5 file.
  • Work with groups and datasets within an HDF5 file.
  • Use the terra::click() function to interact with an RGB raster image

Things You’ll Need To Complete This Tutorial

To complete this tutorial you will need the most current version of R and, preferably, RStudio loaded on your computer.

R Libraries to Install:

  • rhdf5: install.packages("BiocManager"), BiocManager::install("rhdf5")
  • terra: install.packages('terra')
  • plyr: install.packages('plyr')
  • reshape2: install.packages('reshape2')
  • ggplot2: install.packages('ggplot2')
  • neonUtilities: install.packages('neonUtilities')

More on Packages in R - Adapted from Software Carpentry.

Data to Download

These hyperspectral remote sensing data provide information on the National Ecological Observatory Network's San Joaquin Experimental Range (SJER) field site in March of 2021. The data used in this lesson is the 1km by 1km mosaic tile named NEON_D17_SJER_DP3_257000_4112000_reflectance.h5. If you already completed the previous lesson in this tutorial series, you do not need to download this data again. The entire SJER reflectance dataset can be accessed from the NEON Data Portal.

Set Working Directory: This lesson assumes that you have set your working directory to the location of the downloaded data.

An overview of setting the working directory in R can be found here.

Recommended Skills

This tutorial will require that you be comfortable navigating HDF5 files, and have an understanding of what spectral signatures are. For additional information on these topics, we highly recommend you work through the earlier tutorials in this Introduction to Hyperspectral Remote Sensing Data series before starting on this tutorial.

Getting Started

First, we need to load our required packages and set the working directory.

# load required packages

library(rhdf5)

library(reshape2)

library(terra)

library(plyr)

library(ggplot2)

library(grDevices)



# set working directory, you can change this if desired

wd <- "~/data/" 

setwd(wd)

Download the reflectance tile, if you haven't already, using neonUtilities::byTileAOP:

byTileAOP(dpID = 'DP3.30006.001',

          site = 'SJER',

          year = '2021',

          easting = 257500,

          northing = 4112500,

          savepath = wd)

And then we can read in the hyperspectral hdf5 data. We will also collect a few other important pieces of information (band wavelengths and scaling factor) while we're at it.

# define filepath to the hyperspectral dataset

h5_file <- paste0(wd,"DP3.30006.001/neon-aop-products/2021/FullSite/D17/2021_SJER_5/L3/Spectrometer/Reflectance/NEON_D17_SJER_DP3_257000_4112000_reflectance.h5")



# read in the wavelength information from the HDF5 file

wavelengths <- h5read(h5_file,"/SJER/Reflectance/Metadata/Spectral_Data/Wavelength")



# grab scale factor from the Reflectance attributes

reflInfo <- h5readAttributes(h5_file,"/SJER/Reflectance/Reflectance_Data" )



scaleFact <- reflInfo$Scale_Factor

Now, we will read in the RGB image that we created in an earlier tutorial and plot it.

# read in RGB image as a 'stack' rather than a plain 'raster'

rgbStack <- rast(paste0(wd,"NEON_hyperspectral_tutorial_example_RGB_image.tif"))



# plot as RGB image, with a linear stretch

plotRGB(rgbStack,
        r=1,g=2,b=3, scale=300, 
        stretch = "lin")

RGB image of a portion of the SJER field site using 3 bands from the raster stack. Brightness values have been stretched using the stretch argument to produce a natural looking image.

Interactive click Function from the terra Package

Next, we use an interactive clicking function to identify the pixels that we want to extract spectral signatures for. To follow along with this tutorial, we suggest the following six cover types (exact locations shown in the image below).

  1. Water
  2. Tree canopy (avoid the shaded northwestern side of the tree)
  3. Irrigated grass
  4. Bare soil (baseball diamond infield)
  5. Building roof (blue)
  6. Road

As shown here:

RGB image of a portion of the SJER field site using 3 bands from the raster stack. Also displayed are points labeled with numbers one through six, representing six land cover types selected using the interactive click function from the raster package. These are: 1. Water, 2. Tree Canopy, 3. Grass, 4. Soil (Baseball Diamond), 5. Building Roof, and 6. Road. Plotting parameters have been changed to enhance visibility.
Six different land cover types chosen for this study in the order listed above (red numbers). This image is displayed with a histogram stretch.

Data Tip: Note from the terra::click Description (which you can read by typing help("click"): click "does not work well on the default RStudio plotting device. To work around that, you can first run dev.new(noRStudioGD = TRUE) which will create a separate window for plotting, then use plot() followed by click() and click on the map."

For this next part, if you are following along in RStudio, you will need to enter these line below directly in the Console. dev.new(noRStudioGD = TRUE) will open up a separate window for plotting, which is where you will click the pixels to extract spectra, using the terra::click functionality.

dev.new(noRStudioGD = TRUE)

Now we can create our RGB plot, and start clicking on this in the pop-out Graphics window.

# change plotting parameters to better see the points and numbers generated from clicking

par(col="red", cex=2)



# use a histogram stretch in order to provide more contrast for selecting pixels

plotRGB(rgbStack, r=1, g=2, b=3, scale=300, stretch = "hist") 



# use the 'click' function

c <- click(rgbStack, n = 6, id=TRUE, xy=TRUE, cell=TRUE, type="p", pch=16, col="red", col.lab="red")

Once you have clicked your six points, the graphics window should close. If you want to choose new points, or if you accidentally clicked a point that you didn't intend to, run the previous 2 chunks of code again to re-start.

The click() function identifies the cell number that you clicked, but in order to extract spectral signatures, we need to convert that cell number into a row and column, as shown here:

# convert raster cell number into row and column (used to extract spectral signature below)

c$row <- c$cell%/%nrow(rgbStack)+1 # add 1 because R is 1-indexed

c$col <- c$cell%%ncol(rgbStack)

Extract Spectral Signatures from HDF5 file

Next, we will loop through each of the cells that and use the h5read() function to extract the reflectance values of all bands from the given pixel (row and column).

# create a new dataframe from the band wavelengths so that we can add the reflectance values for each cover type

pixel_df <- as.data.frame(wavelengths)

# loop through each of the cells that we selected

for(i in 1:length(c$cell)){
# extract spectral values from a single pixel
aPixel <- h5read(h5_file,"/SJER/Reflectance/Reflectance_Data",
                 index=list(NULL,c$col[i],c$row[i]))

# scale reflectance values from 0-1
aPixel <- aPixel/as.vector(scaleFact)

# reshape the data and turn into dataframe
b <- adply(aPixel,c(1))

# rename the column that we just created
names(b)[2] <- paste0("Point_",i)

# add reflectance values for this pixel to our combined data.frame called pixel_df
pixel_df <- cbind(pixel_df,b[2])
}

Plot Spectral signatures using ggplot2

Finally, we have everything that we need to plot the spectral signatures for each of the pixels that we clicked. In order to color our lines by the different land cover types, we will first reshape our data using the melt() function, then plot the spectral signatures.

# Use the melt() function to reshape the dataframe into a format that ggplot prefers

pixel.melt <- reshape2::melt(pixel_df, id.vars = "wavelengths", value.name = "Reflectance")

# Now, let's plot the spectral signatures!

ggplot()+
  geom_line(data = pixel.melt, mapping = aes(x=wavelengths, y=Reflectance, color=variable), lwd=1.5)+
  scale_colour_manual(values = c("blue3","green4","green2","tan4","grey50","black"),
                      labels = c("Water","Tree","Grass","Soil","Roof","Road"))+
  labs(color = "Cover Type")+
  ggtitle("Land cover spectral signatures")+
  theme(plot.title = element_text(hjust = 0.5, size=20))+
  xlab("Wavelength")

Plot of spectral signatures for the six different land cover types: Water, Tree, Grass, Soil, Roof, and Road. The x-axis is wavelength in nanometers and the y-axis is reflectance.

Nice! However, there seems to be something weird going on in the wavelengths near ~1400nm and ~1850 nm...

Atmospheric Absorption Bands

Those irregularities around 1400nm and 1850 nm are two major atmospheric absorption bands - regions where gasses in the atmosphere (primarily carbon dioxide and water vapor) absorb radiation, and therefore, obscure the reflected radiation that the imaging spectrometer measures. Fortunately, the lower and upper bound of each of those atmospheric absorption bands is specified in the HDF5 file. Let's read those bands and plot rectangles where the reflectance measurements are obscured by atmospheric absorption.

# grab reflectance metadata (which contains absorption band limits)

reflMetadata <- h5readAttributes(h5_file,"/SJER/Reflectance" )

ab1 <- reflMetadata$Band_Window_1_Nanometers

ab2 <- reflMetadata$Band_Window_2_Nanometers

# Plot spectral signatures again with grey rectangles highlighting the absorption bands

ggplot()+
  geom_line(data = pixel.melt, mapping = aes(x=wavelengths, y=Reflectance, color=variable), lwd=1.5)+
  geom_rect(mapping=aes(ymin=min(pixel.melt$Reflectance),ymax=max(pixel.melt$Reflectance), xmin=ab1[1], xmax=ab1[2]), color="black", fill="grey40", alpha=0.8)+
  geom_rect(mapping=aes(ymin=min(pixel.melt$Reflectance),ymax=max(pixel.melt$Reflectance), xmin=ab2[1], xmax=ab2[2]), color="black", fill="grey40", alpha=0.8)+
  scale_colour_manual(values = c("blue3","green4","green2","tan4","grey50","black"),
                      labels = c("Water","Tree","Grass","Soil","Roof","Road"))+
  labs(color = "Cover Type")+
  ggtitle("Land cover spectral signatures with\n atmospheric absorption bands greyed out")+
  theme(plot.title = element_text(hjust = 0.5, size=20))+
  xlab("Wavelength")

Plot of spectral signatures for the six different land cover types: Water, Tree, Grass, Soil, Roof, and Road. This plot includes two greyed-out rectangles in regions near 1400nm and 1850nm where the reflectance measurements are obscured by atmospheric absorption. The x-axis is wavelength in nanometers and the y-axis is reflectance.

Now we can clearly see that the noisy sections of each spectral signature are within the atmospheric absorption bands. For our final step, let's take all reflectance values from within each absorption band and set them to NA to remove the noisiest sections from the plot.

# Duplicate the spectral signatures into a new data.frame

pixel.melt.masked <- pixel.melt

# Mask out all values within each of the two atmospheric absorption bands

pixel.melt.masked[pixel.melt.masked$wavelengths>ab1[1]&pixel.melt.masked$wavelengths<ab1[2],]$Reflectance <- NA

pixel.melt.masked[pixel.melt.masked$wavelengths>ab2[1]&pixel.melt.masked$wavelengths<ab2[2],]$Reflectance <- NA



# Plot the masked spectral signatures

ggplot()+
  geom_line(data = pixel.melt.masked, mapping = aes(x=wavelengths, y=Reflectance, color=variable), lwd=1.5)+
  scale_colour_manual(values = c("blue3","green4","green2","tan4","grey50","black"),
                      labels = c("Water","Tree","Grass","Soil","Roof","Road"))+
  labs(color = "Cover Type")+
  ggtitle("Land cover spectral signatures with\n atmospheric absorption bands removed")+
  theme(plot.title = element_text(hjust = 0.5, size=20))+
  xlab("Wavelength")

Plot of spectral signatures for the six different land cover types. Values falling within the atmospheric absorption bands have been set to NA and ommited from the plot. The x-axis is wavelength in nanometers and the y-axis is reflectance.

There you have it, spectral signatures for six different land cover types, with the regions from the atmospheric absorption bands removed.

Challenge: Compare Spectral Signatures

There are many interesting comparisons to make with spectral signatures. Try these challenges to explore hyperspectral data further:

  1. Compare six different types of vegetation, and pick an appropriate color for each of their lines. A nice guide to the many different color options in R can be found here.

  2. What happens if you only click five points? What about ten? How does this change the spectral signature plots, and can you fix any errors that occur?

  3. Does shallow water have a different spectral signature than deep water?

Subsetting NEON HDF5 hyperspectral files to reduce file size

In this tutorial, we will subset an existing HDF5 file containing NEON hyperspectral data. The purpose of this exercise is to generate a smaller file for use in subsequent analyses to reduce the file transfer time and processing power needed.

Learning Objectives

After completing this activity, you will be able to:

  • Navigate an HDF5 file to identify the variables of interest.
  • Generate a new HDF5 file from a subset of the existing dataset.
  • Save the new HDF5 file for future use.

Things You’ll Need To Complete This Tutorial

To complete this tutorial you will need the most current version of R and, preferably, RStudio loaded on your computer.

R Libraries to Install:

  • rhdf5: install.packages("BiocManager"), BiocManager::install("rhdf5")
  • raster: install.packages('raster')

More on Packages in R - Adapted from Software Carpentry.

Data to Download

The purpose of this tutorial is to reduce a large file (~652Mb) to a smaller size. The download linked here is the original large file, and therefore you may choose to skip this tutorial and download if you are on a slow internet connection or have file size limitations on your device.

Download NEON Teaching Dataset: Full Tile Imaging Spectrometer Data - HDF5 (652Mb)

These hyperspectral remote sensing data provide information on the National Ecological Observatory Network's San Joaquin Exerimental Range field site.

These data were collected over the San Joaquin field site located in California (Domain 17) in March of 2019 and processed at NEON headquarters. This particular mosaic tile is named NEON_D17_SJER_DP3_257000_4112000_reflectance.h5. The entire dataset can be accessed by request from the NEON Data Portal.

Download Dataset

Set Working Directory: This lesson assumes that you have set your working directory to the location of the downloaded and unzipped data subsets.

An overview of setting the working directory in R can be found here.

R Script & Challenge Code: NEON data lessons often contain challenges that reinforce learned skills. If available, the code for challenge solutions is found in the downloadable R script of the entire lesson, available in the footer of each lesson page.


Recommended Skills

For this tutorial, we recommend that you have some basic familiarity with the HDF5 file format, including knowing how to open HDF5 files (in Rstudio or HDF5Viewer) and how groups and metadata are structured. To brush up on these skills, we suggest that you work through the Introduction to Working with HDF5 Format in R series before moving on to this tutorial.

Why subset your dataset?

There are many reasons why you may wish to subset your HDF5 file. Primarily, HDF5 files may contain a large amount of information that is not necessary for your purposes. By subsetting the file, you can reduce file size, thereby shrinking your storage needs, shortening file transfer/download times, and reducing your processing time for analysis. In this example, we will take a full HDF5 file of NEON hyperspectral reflectance data from the San Joaquin Experimental Range (SJER) that has a file size of ~652 Mb and make a new HDF5 file with a reduced spatial extent, and a reduced spectral resolution, yielding a file of only ~50.1 Mb. This reduction in file size will make it easier and faster to conduct your analysis and to share your data with others. We will then use this subsetted file in the Introduction to Hyperspectral Remote Sensing Data series.

If you find that downloading the full 652 Mb file takes too much time or storage space, you will find a link to this subsetted file at the top of each lesson in the Introduction to Hyperspectral Remote Sensing Data series.

Exploring the NEON hyperspectral HDF5 file structure

In order to determine what information that we want to put into our subset, we should first take a look at the full NEON hyperspectral HDF5 file structure to see what is included. To do so, we will load the required package for this tutorial (you can un-comment the middle two lines to load 'BiocManager' and 'rhdf5' if you don't already have it on your computer).

# Install rhdf5 package (only need to run if not already installed)
# install.packages("BiocManager")
# BiocManager::install("rhdf5")

# Load required packages
library(rhdf5)

Next, we define our working directory where we have saved the full HDF5 file of NEON hyperspectral reflectance data from the SJER site. Note, the filepath to the working directory will depend on your local environment. Then, we create a string (f) of the HDF5 filename and read its attributes.

# set working directory to ensure R can find the file we wish to import and where
# we want to save our files. Be sure to move the download into your working directory!
wd <- "~/Documents/data/" # This will depend on your local environment
setwd(wd)

# Make the name of our HDF5 file a variable
f_full <- paste0(wd,"NEON_D17_SJER_DP3_257000_4112000_reflectance.h5")

Next, let's take a look at the structure of the full NEON hyperspectral reflectance HDF5 file.

View(h5ls(f_full, all=T))

Wow, there is a lot of information in there! The majority of the groups contained within this file are Metadata, most of which are used for processing the raw observations into the reflectance product that we want to use. For demonstration and teaching purposes, we will not need this information. What we will need are things like the Coordinate_System information (so that we can georeference these data), the Wavelength dataset (so that we can match up each band with its appropriate wavelength in the electromagnetic spectrum), and of course the Reflectance_Data themselves. You can also see that each group and dataset has a number of associated attributes (in the 'num_attrs' column). We will want to copy over those attributes into the data subset as well. But first, we need to define each of the groups that we want to populate in our new HDF5 file.

Create new HDF5 file framework

In order to make a new subset HDF5 file, we first must create an empty file with the appropriate name, then we will begin to fill in that file with the essential data and attributes that we want to include. Note that the function h5createFile() will not overwrite an existing file. Therefore, if you have already created or downloaded this file, the function will throw an error! Each function should return 'TRUE' if it runs correctly.

# First, create a name for the new file
f <- paste0(wd, "NEON_hyperspectral_tutorial_example_subset.h5")

# create hdf5 file
h5createFile(f)

## [1] TRUE

# Now we create the groups that we will use to organize our data
h5createGroup(f, "SJER/")

## [1] TRUE

h5createGroup(f, "SJER/Reflectance")

## [1] TRUE

h5createGroup(f, "SJER/Reflectance/Metadata")

## [1] TRUE

h5createGroup(f, "SJER/Reflectance/Metadata/Coordinate_System")

## [1] TRUE

h5createGroup(f, "SJER/Reflectance/Metadata/Spectral_Data")

## [1] TRUE

Adding group attributes

One of the great things about HDF5 files is that they can contain data and attributes within the same group. As explained within the Introduction to Working with HDF5 Format in R series, attributes are a type of metadata that are associated with an HDF5 group or dataset. There may be multiple attributes associated with each group and/or dataset. Attributes come with a name and an associated array of information. In this tutorial, we will read the existing attribute data from the full hyperspectral tile using the h5readAttributes() function (which returns a list of attributes), then we loop through those attributes and write each attribute to its appropriate group using the h5writeAttribute() function.

First, we will do this for the low-level "SJER/Reflectance" group. In this step, we are adding attributes to a group rather than a dataset. To do so, we must first open a file and group interface using the H5Fopen and H5Gopen functions, then we can use h5writeAttribute() to edit the group that we want to give an attribute.

a <- h5readAttributes(f_full,"/SJER/Reflectance/")
fid <- H5Fopen(f)
g <- H5Gopen(fid, "SJER/Reflectance")

for(i in 1:length(names(a))){
  h5writeAttribute(attr = a[[i]], h5obj=g, name=names(a[i]))
}

# It's always a good idea to close the file connection immidiately
# after finishing each step that leaves an open connection.
h5closeAll()

Next, we will loop through each of the datasets within the Coordinate_System group, and copy those (and their attributes, if present) from the full tile to our subset file. The Coordinate_System group contains many important pieces of information for geolocating our data, so we need to make sure that the subset file has that information.

# make a list of all groups within the full tile file
ls <- h5ls(f_full,all=T)

# make a list of all of the names within the Coordinate_System group
cg <- unique(ls[ls$group=="/SJER/Reflectance/Metadata/Coordinate_System",]$name)

# Loop through the list of datasets that we just made above
for(i in 1:length(cg)){
  print(cg[i])
  
  # Read the inividual dataset within the Coordinate_System group
  d=h5read(f_full,paste0("/SJER/Reflectance/Metadata/Coordinate_System/",cg[i]))

  # Read the associated attributes (if any)
  a=h5readAttributes(f_full,paste0("/SJER/Reflectance/Metadata/Coordinate_System/",cg[i]))
    
  # Assign the attributes (if any) to the dataset
  attributes(d)=a
  
  # Finally, write the dataset to the HDF5 file
  h5write(obj=d,file=f,
          name=paste0("/SJER/Reflectance/Metadata/Coordinate_System/",cg[i]),
          write.attributes=T)
}

## [1] "Coordinate_System_String"
## [1] "EPSG Code"
## [1] "Map_Info"
## [1] "Proj4"

Spectral Subsetting

The goal of subsetting this dataset is to substantially reduce the file size, making it faster to download and process these data. While each AOP mosaic tile is not particularly large in terms of its spatial scale (1km by 1km at 1m resolution= 1,000,000 pixels, or about half as many pixels at shown on a standard 1080p computer screen), the 426 spectral bands available result in a fairly large file size. Therefore, we will reduce the spectral resolution of these data by selecting every fourth band in the dataset, which reduces the file size to 1/4 of the original!

Some circumstances demand the full spectral resolution file. For example, if you wanted to discern between the spectral signatures of similar minerals, or if you were conducting an analysis of the differences in the 'red edge' between plant functional types, you would want to use the full spectral resolution of the original hyperspectral dataset. Still, we can use far fewer bands for demonstration and teaching purposes, while still getting a good sense of what these hyperspectral data can do.

# First, we make our 'index', a list of number that will allow us to select every fourth band, using the "sequence" function seq()
idx <- seq(from = 1, to = 426, by = 4)

# We then use this index to select particular wavelengths from the full tile using the "index=" argument
wavelengths <- h5read(file = f_full, 
             name = "SJER/Reflectance/Metadata/Spectral_Data/Wavelength", 
             index = list(idx)
            )

# As per above, we also need the wavelength attributes
wavelength.attributes <- h5readAttributes(file = f_full, 
                       name = "SJER/Reflectance/Metadata/Spectral_Data/Wavelength")
attributes(wavelengths) <- wavelength.attributes

# Finally, write the subset of wavelengths and their attributes to the subset file
h5write(obj=wavelengths, file=f,
        name="SJER/Reflectance/Metadata/Spectral_Data/Wavelength",
        write.attributes=T)

Spatial Subsetting

Even after spectral subsetting, our file size would be greater than 100Mb. herefore, we will also perform a spatial subsetting process to further reduce our file size. Now, we need to figure out which part of the full image that we want to extract for our subset. It takes a number of steps in order to read in a band of data and plot the reflectance values - all of which are thoroughly described in the Intro to Working with Hyperspectral Remote Sensing Data in HDF5 Format in R tutorial. For now, let's focus on the essentials for our problem at hand. In order to explore the spatial qualities of this dataset, let's plot a single band as an overview map to see what objects and land cover types are contained within this mosaic tile. The Reflectance_Data dataset has three dimensions in the order of bands, columns, rows. We want to extract a single band, and all 1,000 columns and rows, so we will feed those values into the index= argument as a list. For this example, we will select the 58th band in the hyperspectral dataset, which corresponds to a wavelength of 667nm, which is in the red end of the visible electromagnetic spectrum. We will use NULL in the column and row position to indicate that we want all of the columns and rows (we agree that it is weird that NULL indicates "all" in this circumstance, but that is the default behavior for this, and many other, functions).

# Extract or "slice" data for band 58 from the HDF5 file
b58 <- h5read(f_full,name = "SJER/Reflectance/Reflectance_Data",
             index=list(58,NULL,NULL))
h5closeAll()

# convert from array to matrix
b58 <- b58[1,,]

# Make a plot to view this band
image(log(b58), col=grey(0:100/100))

As we can see here, this hyperspectral reflectance tile contains a school campus that is under construction. There are many different land cover types contained here, which makes it a great example! Perhaps the most unique feature shown is in the bottom right corner of this image, where we can see the tip of a small reservoir. Let's be sure to capture this feature in our spatial subset, as well as a few other land cover types (irrigated grass, trees, bare soil, and buildings).

While raster images count their pixels from the top left corner, we are working with a matrix, which counts its pixels from the bottom left corner. Therefore, rows are counted from the bottom to the top, and columns are counted from the left to the right. If we want to sample the bottom right quadrant of this image, we need to select rows 1 through 500 (bottom half), and columns 501 through 1000 (right half). Note that, as above, the index= argument in h5read() requires a list of three dimensions for this example - in the order of bands, columns, rows.

subset_rows <- 1:500
subset_columns <- 501:1000
# Extract or "slice" data for band 44 from the HDF5 file
b58 <- h5read(f_full,name = "SJER/Reflectance/Reflectance_Data",
             index=list(58,subset_columns,subset_rows))
h5closeAll()

# convert from array to matrix
b58 <- b58[1,,]

# Make a plot to view this band
image(log(b58), col=grey(0:100/100))

Perfect - now we have a spatial subset that includes all of the different land cover types that we are interested in investigating.

### Challenge: Pick your subset
  1. Pick your own area of interest for this spatial subset, and find the rows and columns that capture that area. Can you include some solar panels, as well as the water body?

  2. Does it make a difference if you use a band from another part of the electromagnetic spectrum, such as the near-infrared? Hint: you can use the 'wavelengths' function above while removing the index= argument to get the full list of band wavelengths.

Extracting a subset

Now that we have determined our ideal spectral and spatial subsets for our analysis, we are ready to put both of those pieces of information into our h5read() function to extract our example subset out of the full NEON hyperspectral dataset. Here, we are taking every fourth band (using our idx variabe), columns 501:1000 (the right half of the tile) and rows 1:500 (the bottom half of the tile). The results in us extracting every fourth band of the bottom-right quadrant of the mosaic tile.

# Read in reflectance data.
# Note the list that we feed into the index argument! 
# This tells the h5read() function which bands, rows, and 
# columns to read. This is ultimately how we reduce the file size.
hs <- h5read(file = f_full, 
             name = "SJER/Reflectance/Reflectance_Data", 
             index = list(idx, subset_columns, subset_rows)
            )

As per the 'adding group attributes' section above, we will need to add the attributes to the hyperspectral data (hs) before writing to the new HDF5 subset file (f). The hs variable already has one attribute, $dim, which contains the actual dimensions of the hs array, and will be important for writing the array to the f file later. We will want to combine this attribute with all of the other Reflectance_Data group attributes from the original HDF5 file, f. However, some of the attributes will no longer be valid, such as the Dimensions and Spatial_Extent_meters attributes, so we will need to overwrite those before assigning these attributes to the hs variable to then write to the f file.

# grab the '$dim' attribute - as this will be needed 
# when writing the file at the bottom
hsd <- attributes(hs)

# We also need the attributes for the reflectance data.
ha <- h5readAttributes(file = f_full, 
                       name = "SJER/Reflectance/Reflectance_Data")

# However, some of the attributes are not longer valid since 
# we changed the spatial extend of this dataset. therefore, 
# we will need to overwrite those with the correct values.
ha$Dimensions <- c(500,500,107) # Note that the HDF5 file saves dimensions in a different order than R reads them
ha$Spatial_Extent_meters[1] <- ha$Spatial_Extent_meters[1]+500
ha$Spatial_Extent_meters[3] <- ha$Spatial_Extent_meters[3]+500
attributes(hs) <- c(hsd,ha)

# View the combined attributes to ensure they are correct
attributes(hs)

## $dim
## [1] 107 500 500
## 
## $Cloud_conditions
## [1] "For cloud conditions information see Weather Quality Index dataset."
## 
## $Cloud_type
## [1] "Cloud type may have been selected from multiple flight trajectories."
## 
## $Data_Ignore_Value
## [1] -9999
## 
## $Description
## [1] "Atmospherically corrected reflectance."
## 
## $Dimension_Labels
## [1] "Line, Sample, Wavelength"
## 
## $Dimensions
## [1] 500 500 107
## 
## $Interleave
## [1] "BSQ"
## 
## $Scale_Factor
## [1] 10000
## 
## $Spatial_Extent_meters
## [1]  257500  258000 4112500 4113000
## 
## $Spatial_Resolution_X_Y
## [1] 1 1
## 
## $Units
## [1] "Unitless."
## 
## $Units_Valid_range
## [1]     0 10000

# Finally, write the hyperspectral data, plus attributes, 
# to our new file 'f'.
h5write(obj=hs, file=f,
        name="SJER/Reflectance/Reflectance_Data",
        write.attributes=T)

## You created a large dataset with compression and chunking.
## The chunk size is equal to the dataset dimensions.
## If you want to read subsets of the dataset, you should testsmaller chunk sizes to improve read times.

# It's always a good idea to close the HDF5 file connection
# before moving on.
h5closeAll()

That's it! We just created a subset of the original HDF5 file, and included the most essential groups and metadata for exploratory analysis. You may consider adding other information, such as the weather quality indicator, when subsetting datasets for your own purposes.

If you want to take a look at the subset that you just made, run the h5ls() function:

View(h5ls(f, all=T))

Access and Work with NEON Geolocation Data

This tutorial explores NEON geolocation data. The focus is on the locations of NEON observational sampling and sensor data; NEON remote sensing data are inherently spatial and have dedicated tutorials. If you are interested in connecting remote sensing with ground-based measurements, the methods in the vegetation structure and canopy height model tutorial can be generalized to other data products.

In planning your analyses, consider what level of spatial resolution is required. There is no reason to carefully map each measurement if precise spatial locations aren't required to address your hypothesis! For example, if you want to use the Vegetation structure data product to calculate a site-scale estimate of biomass and production, the spatial coordinates of each tree are probably not needed. If you want to explore relationships between vegetation and beetle communities, you will need to identify the sampling plots where NEON measures both beetles and vegetation, but finer-scale coordinates may not be needed. Finally, if you want to relate vegetation measurements to airborne remote sensing data, you will need very accurate coordinates for each measurement on the ground.

Learning Objectives

After completing this tutorial you will be able to:

  • access NEON spatial data through data downloaded with the neonUtilities package.
  • access and plot specific sampling locations for TOS data products.
  • access and use sensor location data.

Things You’ll Need To Complete This Tutorial

R Programming Language

You will need a current version of R to complete this tutorial. We also recommend the RStudio IDE to work with R.

Setup R Environment

We'll need several R packages in this tutorial. Install the packages, if not already installed, and load the libraries for each.

# run once to get the package, and re-run if you need to get updates

install.packages("ggplot2")  # plotting

install.packages("neonUtilities")  # work with NEON data

install.packages("neonOS")  # work with NEON observational data

install.packages("devtools")  # to use the install_github() function

devtools::install_github("NEONScience/NEON-geolocation/geoNEON")  # work with NEON spatial data



# run every time you start a script

library(ggplot2)

library(neonUtilities)

library(neonOS)

library(geoNEON)



options(stringsAsFactors=F)

Locations for observational data

Plot level locations

Both aquatic and terrestrial observational data downloads include spatial data in the downloaded files. The spatial data in the aquatic data files are the most precise locations available for the sampling events. The spatial data in the terrestrial data downloads represent the locations of the sampling plots. In some cases, the plot is the most precise location available, but for many terrestrial data products, more precise locations can be calculated for specific sampling events.

Here, we'll download the Vegetation structure (DP1.10098.001) data product, examine the plot location data in the download, then calculate the locations of individual trees. These steps can be extrapolated to other terrestrial observational data products; the specific sampling layout varies from data product to data product, but the methods for working with the data are similar.

First, let's download the vegetation structure data from one site, Wind River Experimental Forest (WREF).

If downloading data using the neonUtilities package is new to you, check out the Download and Explore tutorial.

# load veg structure data

vst <- loadByProduct(dpID="DP1.10098.001", 
                     site="WREF",
                     check.size=F)

Data downloaded this way are stored in R as a large list. For this tutorial, we'll work with the individual dataframes within this large list. Alternatively, each dataframe can be assigned as its own object.

To find the spatial data for any given data product, view the variables files to figure out which data table the spatial data are contained in.

View(vst$variables_10098)

Looking through the variables, we can see that the spatial data (decimalLatitude and decimalLongitude, etc) are in the vst_perplotperyear table. Let's take a look at the table.

View(vst$vst_perplotperyear)

As noted above, the spatial data here are at the plot level; the latitude and longitude represent the centroid of the sampling plot. We can map these plots on the landscape using the easting and northing variables; these are the UTM coordinates. At this site, tower plots are 40 m x 40 m, and distributed plots are 20 m x 20 m; we can use the symbols() function to draw boxes of the correct size.

We'll also use the treesPresent variable to subset to only those plots where trees were found and measured.

# start by subsetting data to plots with trees

vst.trees <- vst$vst_perplotperyear[which(
        vst$vst_perplotperyear$treesPresent=="Y"),]



# make variable for plot sizes

plot.size <- numeric(nrow(vst.trees))



# populate plot sizes in new variable

plot.size[which(vst.trees$plotType=="tower")] <- 40

plot.size[which(vst.trees$plotType=="distributed")] <- 20



# create map of plots

symbols(vst.trees$easting,
        vst.trees$northing,
        squares=plot.size, inches=F,
        xlab="Easting", ylab="Northing")

All vegetation structure plots at WREF

We can see where the plots are located across the landscape, and we can see the denser cluster of plots in the area near the micrometeorology tower.

For many analyses, this level of spatial data may be sufficient. Calculating the precise location of each tree is only required for certain hypotheses; consider whether you need these data when working with a data product with plot-level spatial data.

Looking back at the variables_10098 table, notice that there is a table in this data product called vst_mappingandtagging, suggesting we can find mapping data there. Let's take a look.

View(vst$vst_mappingandtagging)

Here we see data fields for stemDistance and stemAzimuth. Looking back at the variables_10098 file, we see these fields contain the distance and azimuth from a pointID to a specific stem. To calculate the precise coordinates of each tree, we would need to get the locations of the pointIDs, and then adjust the coordinates based on distance and azimuth. The Data Product User Guide describes how to carry out these steps, and can be downloaded from the Data Product Details page.

However, carrying out these calculations yourself is not the only option! The geoNEON package contains a function that can do this for you, for the TOS data products with location data more precise than the plot level.

Sampling locations

The getLocTOS() function in the geoNEON package uses the NEON API to access NEON location data and then makes protocol-specific calculations to return precise locations for each sampling effort. This function works for a subset of NEON TOS data products. The list of tables and data products that can be entered is in the package documentation on GitHub.

For more information about the NEON API, see the API tutorial and the API web page. For more information about the location calculations used in each data product, see the Data Product User Guide for each product.

The getLocTOS() function requires two inputs:

  • A data table that contains spatial data from a NEON TOS data product
  • The NEON table name of that data table

For vegetation structure locations, the function call looks like this. This function may take a while to download all the location data. For faster downloads, use an API token.

# calculate individual tree locations

vst.loc <- getLocTOS(data=vst$vst_mappingandtagging,
                     dataProd="vst_mappingandtagging")

What additional data are now available in the data obtained by getLocTOS()?

# print variable names that are new

names(vst.loc)[which(!names(vst.loc) %in% 
                      names(vst$vst_mappingandtagging))]

## [1] "utmZone"                  "adjNorthing"              "adjEasting"              
## [4] "adjCoordinateUncertainty" "adjDecimalLatitude"       "adjDecimalLongitude"     
## [7] "adjElevation"             "adjElevationUncertainty"

Now we have adjusted latitude, longitude, and elevation, and the corresponding easting and northing UTM data. We also have coordinate uncertainty data for these coordinates.

As we did with the plots above, we can use the easting and northing data to plot the locations of the individual trees.

plot(vst.loc$adjEasting, vst.loc$adjNorthing, 
     pch=".", xlab="Easting", ylab="Northing")

All mapped tree locations at WREF

We can see the mapped trees in the same plots we mapped above. We've plotted each individual tree as a ., so all we can see at this scale is the cluster of dots that make up each plot.

Let's zoom in on a single plot:

plot(vst.loc$adjEasting[which(vst.loc$plotID=="WREF_085")], 
     vst.loc$adjNorthing[which(vst.loc$plotID=="WREF_085")], 
     pch=20, xlab="Easting", ylab="Northing")

Tree locations in plot WREF_085

Now we can see the location of each tree within the sampling plot WREF_085. This is interesting, but it would be more interesting if we could see more information about each tree. How are species distributed across the plot, for instance?

We can plot the tree species at each location using the text() function and the vst.loc$taxonID field.

plot(vst.loc$adjEasting[which(vst.loc$plotID=="WREF_085")], 
     vst.loc$adjNorthing[which(vst.loc$plotID=="WREF_085")], 
     type="n", xlab="Easting", ylab="Northing")

text(vst.loc$adjEasting[which(vst.loc$plotID=="WREF_085")], 
     vst.loc$adjNorthing[which(vst.loc$plotID=="WREF_085")],
     labels=vst.loc$taxonID[which(vst.loc$plotID=="WREF_085")],
     cex=0.5)

Tree species and their locations in plot WREF_085

Almost all of the mapped trees in this plot are either Pseudotsuga menziesii or Tsuga heterophylla (Douglas fir and Western hemlock), not too surprising at Wind River.

But suppose we want to map the diameter of each tree? This is a very common way to present a stem map, it gives a visual as if we were looking down on the plot from overhead and had cut off each tree at its measurement height.

Other than taxon, the attributes of the trees, such as diameter, height, growth form, and canopy position, are found in the vst_apparentindividual table, not in the vst_mappingandtagging table. We'll need to join the two tables to get the tree attributes together with their mapped locations.

The neonOS package contains the function joinTableNEON(), which can be used to do this. See the tutorial for the neonOS package for more details about this function.

veg <- joinTableNEON(vst.loc, 
                     vst$vst_apparentindividual,
                     name1="vst_mappingandtagging",
                     name2="vst_apparentindividual")

Now we can use the symbols() function to plot the diameter of each tree, at its spatial coordinates, to create a correctly scaled map of boles in the plot. Note that stemDiameter is in centimeters, while easting and northing UTMs are in meters, so we divide by 100 to scale correctly.

symbols(veg$adjEasting[which(veg$plotID=="WREF_085")], 
        veg$adjNorthing[which(veg$plotID=="WREF_085")], 
        circles=veg$stemDiameter[which(veg$plotID=="WREF_085")]/100/2, 
        inches=F, xlab="Easting", ylab="Northing")

Tree bole diameters in plot WREF_085

If you are interested in taking the vegetation structure data a step further, and connecting measurements of trees on the ground to remotely sensed Lidar data, check out the Vegetation Structure and Canopy Height Model tutorial.

If you are interested in working with other terrestrial observational (TOS) data products, the basic techniques used here to find precise sampling locations and join data tables can be adapted to other TOS data products. Consult the Data Product User Guide for each data product to find details specific to that data product.

Locations for sensor data

Downloads of instrument system (IS) data include a file called sensor_positions.csv. The sensor positions file contains information about the coordinates of each sensor, relative to a reference location.

While the specifics vary, techniques are generalizable for working with sensor data and the sensor_positions.csv file. For this tutorial, let's look at the sensor locations for soil temperature (PAR; DP1.00041.001) at
the NEON Treehaven site (TREE) in July 2018. To reduce our file size, we'll use the 30 minute averaging interval. Our final product from this section is to create a depth profile of soil temperature in one soil plot.

If downloading data using the neonUtilties package is new to you, check out the neonUtilities tutorial.

This function will download about 7 MB of data as written so we have check.size =F for ease of running the code.

# load soil temperature data of interest 

soilT <- loadByProduct(dpID="DP1.00041.001", site="TREE",
                    startdate="2018-07", enddate="2018-07",
                    timeIndex=30, check.size=F)

## Attempting to stack soil sensor data. Note that due to the number of soil sensors at each site, data volume is very high for these data. Consider dividing data processing into chunks, using the nCores= parameter to parallelize stacking, and/or using a high-performance system.

Sensor positions file

Now we can specifically look at the sensor positions file.

# create object for sensor positions file

pos <- soilT$sensor_positions_00041



# view column names

names(pos)

##  [1] "siteID"                           "HOR.VER"                         
##  [3] "sensorLocationID"                 "sensorLocationDescription"       
##  [5] "positionStartDateTime"            "positionEndDateTime"             
##  [7] "referenceLocationID"              "referenceLocationIDDescription"  
##  [9] "referenceLocationIDStartDateTime" "referenceLocationIDEndDateTime"  
## [11] "xOffset"                          "yOffset"                         
## [13] "zOffset"                          "pitch"                           
## [15] "roll"                             "azimuth"                         
## [17] "locationReferenceLatitude"        "locationReferenceLongitude"      
## [19] "locationReferenceElevation"       "eastOffset"                      
## [21] "northOffset"                      "xAzimuth"                        
## [23] "yAzimuth"                         "publicationDate"

# view table

View(pos)

The sensor locations are indexed by the HOR.VER variable - see the file naming conventions page for more details.

Using unique() we can view all the location indices in this file.

unique(pos$HOR.VER)

##  [1] "001.501" "001.502" "001.503" "001.504" "001.505" "001.506" "001.507" "001.508" "001.509" "002.501"
## [11] "002.502" "002.503" "002.504" "002.505" "002.506" "002.507" "002.508" "002.509" "003.501" "003.502"
## [21] "003.503" "003.504" "003.505" "003.506" "003.507" "003.508" "003.509" "004.501" "004.502" "004.503"
## [31] "004.504" "004.505" "004.506" "004.507" "004.508" "004.509" "005.501" "005.502" "005.503" "005.504"
## [41] "005.505" "005.506" "005.507" "005.508" "005.509"

Soil temperature data are collected in 5 instrumented soil plots inside the tower footprint. We see this reflected in the data where HOR = 001 to 005. Within each plot, temperature is measured at 9 depths, seen in VER = 501 to 509. At some sites, the number of depths may differ slightly.

The x, y, and z offsets in the sensor positions file are the relative distance, in meters, to the reference latitude, longitude, and elevation in the file.

The HOR and VER indices in the sensor positions file correspond to the verticalPosition and horizontalPosition fields in soilT$ST_30_minute.

Note that there are two sets of position data for soil plot 001, and that one set has a positionEndDateTime date in the file. This indicates sensors either moved or were relocated; in this case there was a frost heave incident. You can read about it in the issue log, which is displayed on the Data Product Details page, and also included as a table in the data download:

soilT$issueLog_00041[grep("TREE soil plot 1", 
                     soilT$issueLog_00041$locationAffected),]

##      id parentIssueID            issueDate         resolvedDate       dateRangeStart         dateRangeEnd
## 1: 9328            NA 2019-05-23T00:00:00Z 2019-05-23T00:00:00Z 2018-11-07T00:00:00Z 2019-04-19T00:00:00Z
##                                                                                                                          locationAffected
## 1: D05 TREE soil plot 1 measurement levels 1-9 (HOR.VER: 001.501, 001.502, 001.503, 001.504, 001.505, 001.506, 001.507, 001.508, 001.509)
##                                                                                                                                                                                                                           issue
## 1: Soil temperature sensors were pushed or pulled out of the ground by 3 cm over winter, presumably due to freeze-thaw action. The exact timing of this is unknown, but it occurred sometime between 2018-11-07 and 2019-04-19.
##                                                                                        resolution
## 1: Sensor depths were updated in the database with a start date of 2018-11-07 for the new depths.

Since we're working with data from July 2018, and the change in sensor locations is dated Nov 2018, we'll use the original locations. There are a number of ways to drop the later locations from the table; here, we find the rows in which the positionEndDateTime field is empty, indicating no end date, and the rows corresponding to soil plot 001, and drop all the rows that meet both criteria.

pos <- pos[-intersect(grep("001.", pos$HOR.VER),
                      which(pos$positionEndDateTime=="")),]

Our goal is to plot a time series of temperature, stratified by depth, so let's start by joining the data file and sensor positions file, to bring the depth measurements into the same data frame with the data.

# paste horizontalPosition and verticalPosition together

# to match HOR.VER in the sensor positions file

soilT$ST_30_minute$HOR.VER <- paste(soilT$ST_30_minute$horizontalPosition,
                                    soilT$ST_30_minute$verticalPosition,
                                    sep=".")



# left join to keep all temperature records

soilTHV <- merge(soilT$ST_30_minute, pos, 
                 by="HOR.VER", all.x=T)

And now we can plot soil temperature over time for each depth. We'll use ggplot since it's well suited to this kind of stratification. Each soil plot is its own panel, and each depth is its own line:

gg <- ggplot(soilTHV, 
             aes(endDateTime, soilTempMean, 
                 group=zOffset, color=zOffset)) +
             geom_line() + 
        facet_wrap(~horizontalPosition)

gg

## Warning: Removed 1488 rows containing missing values (`geom_line()`).

Tiled figure of temperature by depth in each plot

We can see that as soil depth increases, temperatures become much more stable, while the shallowest measurement has a clear diurnal cycle. We can also see that something has gone wrong with one of the sensors in plot 002. To remove those data, use only values where the final quality flag passed, i.e. finalQF = 0

gg <- ggplot(subset(soilTHV, finalQF==0), 
             aes(endDateTime, soilTempMean, 
                 group=zOffset, color=zOffset)) +
             geom_line() + 
        facet_wrap(~horizontalPosition)

gg

Tiled figure of temperature by depth in each plot with only passing quality flags

Introduction to working with NEON eddy flux data

This data tutorial provides an introduction to working with NEON eddy flux data, using the neonUtilities R package. If you are new to NEON data, we recommend starting with a more general tutorial, such as the neonUtilities tutorial or the Download and Explore tutorial. Some of the functions and techniques described in those tutorials will be used here, as well as functions and data formats that are unique to the eddy flux system.

This tutorial assumes general familiarity with eddy flux data and associated concepts.

1. Setup

Start by installing and loading packages and setting options. To work with the NEON flux data, we need the rhdf5 package, which is hosted on Bioconductor, and requires a different installation process than CRAN packages:

install.packages('BiocManager')
BiocManager::install('rhdf5')
install.packages('neonUtilities')




options(stringsAsFactors=F)

library(neonUtilities)

Use the zipsByProduct() function from the neonUtilities package to download flux data from two sites and two months. The transformations and functions below will work on any time range and site(s), but two sites and two months allows us to see all the available functionality while minimizing download size.

Inputs to the zipsByProduct() function:

  • dpID: DP4.00200.001, the bundled eddy covariance product
  • package: basic (the expanded package is not covered in this tutorial)
  • site: NIWO = Niwot Ridge and HARV = Harvard Forest
  • startdate: 2018-06 (both dates are inclusive)
  • enddate: 2018-07 (both dates are inclusive)
  • savepath: modify this to something logical on your machine
  • check.size: T if you want to see file size before downloading, otherwise F

The download may take a while, especially if you're on a slow network. For faster downloads, consider using an API token.

zipsByProduct(dpID="DP4.00200.001", package="basic", 
              site=c("NIWO", "HARV"), 
              startdate="2018-06", enddate="2018-07",
              savepath="~/Downloads", 
              check.size=F)

2. Data Levels

There are five levels of data contained in the eddy flux bundle. For full details, refer to the NEON algorithm document.

Briefly, the data levels are:

  • Level 0' (dp0p): Calibrated raw observations
  • Level 1 (dp01): Time-aggregated observations, e.g. 30-minute mean gas concentrations
  • Level 2 (dp02): Time-interpolated data, e.g. rate of change of a gas concentration
  • Level 3 (dp03): Spatially interpolated data, i.e. vertical profiles
  • Level 4 (dp04): Fluxes

The dp0p data are available in the expanded data package and are beyond the scope of this tutorial.

The dp02 and dp03 data are used in storage calculations, and the dp04 data include both the storage and turbulent components. Since many users will want to focus on the net flux data, we'll start there.

3. Extract Level 4 data (Fluxes!)

To extract the Level 4 data from the HDF5 files and merge them into a single table, we'll use the stackEddy() function from the neonUtilities package.

stackEddy() requires two inputs:

  • filepath: Path to a file or folder, which can be any one of:
    1. A zip file of eddy flux data downloaded from the NEON data portal
    2. A folder of eddy flux data downloaded by the zipsByProduct() function
    3. The folder of files resulting from unzipping either of 1 or 2
    4. One or more HDF5 files of NEON eddy flux data
  • level: dp01-4

Input the filepath you downloaded to using zipsByProduct() earlier, including the filestoStack00200 folder created by the function, and dp04:

flux <- stackEddy(filepath="~/Downloads/filesToStack00200",
                 level="dp04")

We now have an object called flux. It's a named list containing four tables: one table for each site's data, and variables and objDesc tables.

names(flux)

## [1] "HARV"      "NIWO"      "variables" "objDesc"

Let's look at the contents of one of the site data files:

head(flux$NIWO)

##               timeBgn             timeEnd data.fluxCo2.nsae.flux data.fluxCo2.stor.flux data.fluxCo2.turb.flux
## 1 2018-06-01 00:00:00 2018-06-01 00:29:59              0.1713858            -0.06348163              0.2348674
## 2 2018-06-01 00:30:00 2018-06-01 00:59:59              0.9251711             0.08748146              0.8376896
## 3 2018-06-01 01:00:00 2018-06-01 01:29:59              0.5005812             0.02231698              0.4782642
## 4 2018-06-01 01:30:00 2018-06-01 01:59:59              0.8032820             0.25569306              0.5475889
## 5 2018-06-01 02:00:00 2018-06-01 02:29:59              0.4897685             0.23090472              0.2588638
## 6 2018-06-01 02:30:00 2018-06-01 02:59:59              0.9223979             0.06228581              0.8601121
##   data.fluxH2o.nsae.flux data.fluxH2o.stor.flux data.fluxH2o.turb.flux data.fluxMome.turb.veloFric
## 1              15.876622              3.3334970              12.543125                   0.2047081
## 2               8.089274             -1.2063258               9.295600                   0.1923735
## 3               5.290594             -4.4190781               9.709672                   0.1200918
## 4               9.190214              0.2030371               8.987177                   0.1177545
## 5               3.111909              0.1349363               2.976973                   0.1589189
## 6               4.613676             -0.3929445               5.006621                   0.1114406
##   data.fluxTemp.nsae.flux data.fluxTemp.stor.flux data.fluxTemp.turb.flux data.foot.stat.angZaxsErth
## 1               4.7565505              -1.4575094               6.2140599                    94.2262
## 2              -0.2717454               0.3403877              -0.6121331                   355.4252
## 3              -4.2055147               0.1870677              -4.3925824                   359.8013
## 4             -13.3834484              -2.4904300             -10.8930185                   137.7743
## 5              -5.1854815              -0.7514531              -4.4340284                   188.4799
## 6              -7.7365481              -1.9046775              -5.8318707                   183.1920
##   data.foot.stat.distReso data.foot.stat.veloYaxsHorSd data.foot.stat.veloZaxsHorSd data.foot.stat.veloFric
## 1                    8.34                    0.7955893                    0.2713232               0.2025427
## 2                    8.34                    0.8590177                    0.2300000               0.2000000
## 3                    8.34                    1.2601763                    0.2300000               0.2000000
## 4                    8.34                    0.7332641                    0.2300000               0.2000000
## 5                    8.34                    0.7096286                    0.2300000               0.2000000
## 6                    8.34                    0.3789859                    0.2300000               0.2000000
##   data.foot.stat.distZaxsMeasDisp data.foot.stat.distZaxsRgh data.foot.stat.distZaxsAbl
## 1                            8.34                 0.04105708                       1000
## 2                            8.34                 0.27991938                       1000
## 3                            8.34                 0.21293225                       1000
## 4                            8.34                 0.83400000                       1000
## 5                            8.34                 0.83400000                       1000
## 6                            8.34                 0.83400000                       1000
##   data.foot.stat.distXaxs90 data.foot.stat.distXaxsMax data.foot.stat.distYaxs90 qfqm.fluxCo2.nsae.qfFinl
## 1                    325.26                     133.44                     25.02                        1
## 2                    266.88                     108.42                     50.04                        1
## 3                    275.22                     116.76                     66.72                        1
## 4                    208.50                      83.40                     75.06                        1
## 5                    208.50                      83.40                     66.72                        1
## 6                    208.50                      83.40                     41.70                        1
##   qfqm.fluxCo2.stor.qfFinl qfqm.fluxCo2.turb.qfFinl qfqm.fluxH2o.nsae.qfFinl qfqm.fluxH2o.stor.qfFinl
## 1                        1                        1                        1                        1
## 2                        1                        1                        1                        0
## 3                        1                        1                        1                        0
## 4                        1                        1                        1                        0
## 5                        1                        1                        1                        0
## 6                        1                        1                        1                        1
##   qfqm.fluxH2o.turb.qfFinl qfqm.fluxMome.turb.qfFinl qfqm.fluxTemp.nsae.qfFinl qfqm.fluxTemp.stor.qfFinl
## 1                        1                         0                         0                         0
## 2                        1                         0                         1                         0
## 3                        1                         1                         0                         0
## 4                        1                         1                         0                         0
## 5                        1                         0                         0                         0
## 6                        1                         0                         0                         0
##   qfqm.fluxTemp.turb.qfFinl qfqm.foot.turb.qfFinl
## 1                         0                     0
## 2                         1                     0
## 3                         0                     0
## 4                         0                     0
## 5                         0                     0
## 6                         0                     0

The variables and objDesc tables can help you interpret the column headers in the data table. The objDesc table contains definitions for many of the terms used in the eddy flux data product, but it isn't complete. To get the terms of interest, we'll break up the column headers into individual terms and look for them in the objDesc table:

term <- unlist(strsplit(names(flux$NIWO), split=".", fixed=T))
flux$objDesc[which(flux$objDesc$Object %in% term),]

##          Object
## 138 angZaxsErth
## 171        data
## 343      qfFinl
## 420        qfqm
## 604     timeBgn
## 605     timeEnd
##                                                                                                         Description
## 138                                                                                                 Wind direction 
## 171                                                                                          Represents data fields
## 343       The final quality flag indicating if the data are valid for the given aggregation period (1=fail, 0=pass)
## 420 Quality flag and quality metrics, represents quality flags and quality metrics that accompany the provided data
## 604                                                                    The beginning time of the aggregation period
## 605                                                                          The end time of the aggregation period

For the terms that aren't captured here, fluxCo2, fluxH2o, and fluxTemp are self-explanatory. The flux components are

  • turb: Turbulent flux
  • stor: Storage
  • nsae: Net surface-atmosphere exchange

The variables table contains the units for each field:

flux$variables

##    category   system variable             stat           units
## 1      data  fluxCo2     nsae          timeBgn              NA
## 2      data  fluxCo2     nsae          timeEnd              NA
## 3      data  fluxCo2     nsae             flux umolCo2 m-2 s-1
## 4      data  fluxCo2     stor          timeBgn              NA
## 5      data  fluxCo2     stor          timeEnd              NA
## 6      data  fluxCo2     stor             flux umolCo2 m-2 s-1
## 7      data  fluxCo2     turb          timeBgn              NA
## 8      data  fluxCo2     turb          timeEnd              NA
## 9      data  fluxCo2     turb             flux umolCo2 m-2 s-1
## 10     data  fluxH2o     nsae          timeBgn              NA
## 11     data  fluxH2o     nsae          timeEnd              NA
## 12     data  fluxH2o     nsae             flux           W m-2
## 13     data  fluxH2o     stor          timeBgn              NA
## 14     data  fluxH2o     stor          timeEnd              NA
## 15     data  fluxH2o     stor             flux           W m-2
## 16     data  fluxH2o     turb          timeBgn              NA
## 17     data  fluxH2o     turb          timeEnd              NA
## 18     data  fluxH2o     turb             flux           W m-2
## 19     data fluxMome     turb          timeBgn              NA
## 20     data fluxMome     turb          timeEnd              NA
## 21     data fluxMome     turb         veloFric           m s-1
## 22     data fluxTemp     nsae          timeBgn              NA
## 23     data fluxTemp     nsae          timeEnd              NA
## 24     data fluxTemp     nsae             flux           W m-2
## 25     data fluxTemp     stor          timeBgn              NA
## 26     data fluxTemp     stor          timeEnd              NA
## 27     data fluxTemp     stor             flux           W m-2
## 28     data fluxTemp     turb          timeBgn              NA
## 29     data fluxTemp     turb          timeEnd              NA
## 30     data fluxTemp     turb             flux           W m-2
## 31     data     foot     stat          timeBgn              NA
## 32     data     foot     stat          timeEnd              NA
## 33     data     foot     stat      angZaxsErth             deg
## 34     data     foot     stat         distReso               m
## 35     data     foot     stat    veloYaxsHorSd           m s-1
## 36     data     foot     stat    veloZaxsHorSd           m s-1
## 37     data     foot     stat         veloFric           m s-1
## 38     data     foot     stat distZaxsMeasDisp               m
## 39     data     foot     stat      distZaxsRgh               m
## 40     data     foot     stat      distZaxsAbl               m
## 41     data     foot     stat       distXaxs90               m
## 42     data     foot     stat      distXaxsMax               m
## 43     data     foot     stat       distYaxs90               m
## 44     qfqm  fluxCo2     nsae          timeBgn              NA
## 45     qfqm  fluxCo2     nsae          timeEnd              NA
## 46     qfqm  fluxCo2     nsae           qfFinl              NA
## 47     qfqm  fluxCo2     stor           qfFinl              NA
## 48     qfqm  fluxCo2     stor          timeBgn              NA
## 49     qfqm  fluxCo2     stor          timeEnd              NA
## 50     qfqm  fluxCo2     turb          timeBgn              NA
## 51     qfqm  fluxCo2     turb          timeEnd              NA
## 52     qfqm  fluxCo2     turb           qfFinl              NA
## 53     qfqm  fluxH2o     nsae          timeBgn              NA
## 54     qfqm  fluxH2o     nsae          timeEnd              NA
## 55     qfqm  fluxH2o     nsae           qfFinl              NA
## 56     qfqm  fluxH2o     stor           qfFinl              NA
## 57     qfqm  fluxH2o     stor          timeBgn              NA
## 58     qfqm  fluxH2o     stor          timeEnd              NA
## 59     qfqm  fluxH2o     turb          timeBgn              NA
## 60     qfqm  fluxH2o     turb          timeEnd              NA
## 61     qfqm  fluxH2o     turb           qfFinl              NA
## 62     qfqm fluxMome     turb          timeBgn              NA
## 63     qfqm fluxMome     turb          timeEnd              NA
## 64     qfqm fluxMome     turb           qfFinl              NA
## 65     qfqm fluxTemp     nsae          timeBgn              NA
## 66     qfqm fluxTemp     nsae          timeEnd              NA
## 67     qfqm fluxTemp     nsae           qfFinl              NA
## 68     qfqm fluxTemp     stor           qfFinl              NA
## 69     qfqm fluxTemp     stor          timeBgn              NA
## 70     qfqm fluxTemp     stor          timeEnd              NA
## 71     qfqm fluxTemp     turb          timeBgn              NA
## 72     qfqm fluxTemp     turb          timeEnd              NA
## 73     qfqm fluxTemp     turb           qfFinl              NA
## 74     qfqm     foot     turb          timeBgn              NA
## 75     qfqm     foot     turb          timeEnd              NA
## 76     qfqm     foot     turb           qfFinl              NA

Let's plot some data! First, a brief aside about time stamps, since these are time series data.

Time stamps

NEON sensor data come with time stamps for both the start and end of the averaging period. Depending on the analysis you're doing, you may want to use one or the other; for general plotting, re-formatting, and transformations, I prefer to use the start time, because there are some small inconsistencies between data products in a few of the end time stamps.

Note that all NEON data use UTC time, aka Greenwich Mean Time. This is true across NEON's instrumented, observational, and airborne measurements. When working with NEON data, it's best to keep everything in UTC as much as possible, otherwise it's very easy to end up with data in mismatched times, which can cause insidious and hard-to-detect problems. In the code below, time stamps and time zones have been handled by stackEddy() and loadByProduct(), so we don't need to do anything additional. But if you're writing your own code and need to convert times, remember that if the time zone isn't specified, R will default to the local time zone it detects on your operating system.

plot(flux$NIWO$data.fluxCo2.nsae.flux~flux$NIWO$timeBgn, 
     pch=".", xlab="Date", ylab="CO2 flux")

There is a clear diurnal pattern, and an increase in daily carbon uptake as the growing season progresses.

Let's trim down to just two days of data to see a few other details.

plot(flux$NIWO$data.fluxCo2.nsae.flux~flux$NIWO$timeBgn, 
     pch=20, xlab="Date", ylab="CO2 flux",
     xlim=c(as.POSIXct("2018-07-07", tz="GMT"),
            as.POSIXct("2018-07-09", tz="GMT")),
    ylim=c(-20,20), xaxt="n")
axis.POSIXct(1, x=flux$NIWO$timeBgn, 
             format="%Y-%m-%d %H:%M:%S")

Note the timing of C uptake; the UTC time zone is clear here, where uptake occurs at times that appear to be during the night.

4. Merge flux data with other sensor data

Many of the data sets we would use to interpret and model flux data are measured as part of the NEON project, but are not present in the eddy flux data product bundle. In this section, we'll download PAR data and merge them with the flux data; the steps taken here can be applied to any of the NEON instrumented (IS) data products.

Download PAR data

To get NEON PAR data, use the loadByProduct() function from the neonUtilities package. loadByProduct() takes the same inputs as zipsByProduct(), but it loads the downloaded data directly into the current R environment.

Let's download PAR data matching the Niwot Ridge flux data. The inputs needed are:

  • dpID: DP1.00024.001
  • site: NIWO
  • startdate: 2018-06
  • enddate: 2018-07
  • package: basic
  • timeIndex: 30

The new input here is timeIndex=30, which downloads only the 30-minute data. Since the flux data are at a 30-minute resolution, we can save on download time by disregarding the 1-minute data files (which are of course 30 times larger). The timeIndex input can be left off if you want to download all available averaging intervals.

pr <- loadByProduct("DP1.00024.001", site="NIWO", 
                    timeIndex=30, package="basic", 
                    startdate="2018-06", enddate="2018-07",
                    check.size=F)

pr is another named list, and again, metadata and units can be found in the variables table. The PARPAR_30min table contains a verticalPosition field. This field indicates the position on the tower, with 10 being the first tower level, and 20, 30, etc going up the tower.

Join PAR to flux data

We'll connect PAR data from the tower top to the flux data.

pr.top <- pr$PARPAR_30min[which(pr$PARPAR_30min$verticalPosition==
                                max(pr$PARPAR_30min$verticalPosition)),]

As noted above, loadByProduct() automatically converts time stamps to a recognized date-time format when it reads the data. However, the field names for the time stamps differ between the flux data and the other meteorological data: the start of the averaging interval is timeBgn in the flux data and startDateTime in the PAR data.

Let's create a new variable in the PAR data:

pr.top$timeBgn <- pr.top$startDateTime

And now use the matching time stamp fields to merge the flux and PAR data.

fx.pr <- merge(pr.top, flux$NIWO, by="timeBgn")

And now we can plot net carbon exchange as a function of light availability:

plot(fx.pr$data.fluxCo2.nsae.flux~fx.pr$PARMean,
     pch=".", ylim=c(-20,20),
     xlab="PAR", ylab="CO2 flux")

If you're interested in data in the eddy covariance bundle besides the net flux data, the rest of this tutorial will guide you through how to get those data out of the bundle.

5. Vertical profile data (Level 3)

The Level 3 (dp03) data are the spatially interpolated profiles of the rates of change of CO2, H2O, and temperature. Extract the Level 3 data from the HDF5 file using stackEddy() with the same syntax as for the Level 4 data.

prof <- stackEddy(filepath="~/Downloads/filesToStack00200/",
                 level="dp03")

As with the Level 4 data, the result is a named list with data tables for each site.

head(prof$NIWO)

##      timeBgn             timeEnd data.co2Stor.rateRtioMoleDryCo2.X0.1.m data.co2Stor.rateRtioMoleDryCo2.X0.2.m
## 1 2018-06-01 2018-06-01 00:29:59                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X0.3.m data.co2Stor.rateRtioMoleDryCo2.X0.4.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X0.5.m data.co2Stor.rateRtioMoleDryCo2.X0.6.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X0.7.m data.co2Stor.rateRtioMoleDryCo2.X0.8.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X0.9.m data.co2Stor.rateRtioMoleDryCo2.X1.m
## 1                          -0.0002681938                        -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X1.1.m data.co2Stor.rateRtioMoleDryCo2.X1.2.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X1.3.m data.co2Stor.rateRtioMoleDryCo2.X1.4.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X1.5.m data.co2Stor.rateRtioMoleDryCo2.X1.6.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X1.7.m data.co2Stor.rateRtioMoleDryCo2.X1.8.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X1.9.m data.co2Stor.rateRtioMoleDryCo2.X2.m
## 1                          -0.0002681938                        -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X2.1.m data.co2Stor.rateRtioMoleDryCo2.X2.2.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X2.3.m data.co2Stor.rateRtioMoleDryCo2.X2.4.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X2.5.m data.co2Stor.rateRtioMoleDryCo2.X2.6.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X2.7.m data.co2Stor.rateRtioMoleDryCo2.X2.8.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X2.9.m data.co2Stor.rateRtioMoleDryCo2.X3.m
## 1                          -0.0002681938                        -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X3.1.m data.co2Stor.rateRtioMoleDryCo2.X3.2.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X3.3.m data.co2Stor.rateRtioMoleDryCo2.X3.4.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X3.5.m data.co2Stor.rateRtioMoleDryCo2.X3.6.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X3.7.m data.co2Stor.rateRtioMoleDryCo2.X3.8.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X3.9.m data.co2Stor.rateRtioMoleDryCo2.X4.m
## 1                          -0.0002681938                        -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X4.1.m data.co2Stor.rateRtioMoleDryCo2.X4.2.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X4.3.m data.co2Stor.rateRtioMoleDryCo2.X4.4.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X4.5.m data.co2Stor.rateRtioMoleDryCo2.X4.6.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X4.7.m data.co2Stor.rateRtioMoleDryCo2.X4.8.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X4.9.m data.co2Stor.rateRtioMoleDryCo2.X5.m
## 1                          -0.0002681938                        -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X5.1.m data.co2Stor.rateRtioMoleDryCo2.X5.2.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X5.3.m data.co2Stor.rateRtioMoleDryCo2.X5.4.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X5.5.m data.co2Stor.rateRtioMoleDryCo2.X5.6.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X5.7.m data.co2Stor.rateRtioMoleDryCo2.X5.8.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X5.9.m data.co2Stor.rateRtioMoleDryCo2.X6.m
## 1                          -0.0002681938                        -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X6.1.m data.co2Stor.rateRtioMoleDryCo2.X6.2.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X6.3.m data.co2Stor.rateRtioMoleDryCo2.X6.4.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X6.5.m data.co2Stor.rateRtioMoleDryCo2.X6.6.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X6.7.m data.co2Stor.rateRtioMoleDryCo2.X6.8.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X6.9.m data.co2Stor.rateRtioMoleDryCo2.X7.m
## 1                          -0.0002681938                        -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X7.1.m data.co2Stor.rateRtioMoleDryCo2.X7.2.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X7.3.m data.co2Stor.rateRtioMoleDryCo2.X7.4.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X7.5.m data.co2Stor.rateRtioMoleDryCo2.X7.6.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X7.7.m data.co2Stor.rateRtioMoleDryCo2.X7.8.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X7.9.m data.co2Stor.rateRtioMoleDryCo2.X8.m
## 1                          -0.0002681938                        -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X8.1.m data.co2Stor.rateRtioMoleDryCo2.X8.2.m
## 1                          -0.0002681938                          -0.0002681938
##   data.co2Stor.rateRtioMoleDryCo2.X8.3.m data.co2Stor.rateRtioMoleDryCo2.X8.4.m
## 1                          -0.0002681938                          -0.0002681938
##   data.h2oStor.rateRtioMoleDryH2o.X0.1.m data.h2oStor.rateRtioMoleDryH2o.X0.2.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X0.3.m data.h2oStor.rateRtioMoleDryH2o.X0.4.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X0.5.m data.h2oStor.rateRtioMoleDryH2o.X0.6.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X0.7.m data.h2oStor.rateRtioMoleDryH2o.X0.8.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X0.9.m data.h2oStor.rateRtioMoleDryH2o.X1.m
## 1                            0.000315911                          0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X1.1.m data.h2oStor.rateRtioMoleDryH2o.X1.2.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X1.3.m data.h2oStor.rateRtioMoleDryH2o.X1.4.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X1.5.m data.h2oStor.rateRtioMoleDryH2o.X1.6.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X1.7.m data.h2oStor.rateRtioMoleDryH2o.X1.8.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X1.9.m data.h2oStor.rateRtioMoleDryH2o.X2.m
## 1                            0.000315911                          0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X2.1.m data.h2oStor.rateRtioMoleDryH2o.X2.2.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X2.3.m data.h2oStor.rateRtioMoleDryH2o.X2.4.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X2.5.m data.h2oStor.rateRtioMoleDryH2o.X2.6.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X2.7.m data.h2oStor.rateRtioMoleDryH2o.X2.8.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X2.9.m data.h2oStor.rateRtioMoleDryH2o.X3.m
## 1                            0.000315911                          0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X3.1.m data.h2oStor.rateRtioMoleDryH2o.X3.2.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X3.3.m data.h2oStor.rateRtioMoleDryH2o.X3.4.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X3.5.m data.h2oStor.rateRtioMoleDryH2o.X3.6.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X3.7.m data.h2oStor.rateRtioMoleDryH2o.X3.8.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X3.9.m data.h2oStor.rateRtioMoleDryH2o.X4.m
## 1                            0.000315911                          0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X4.1.m data.h2oStor.rateRtioMoleDryH2o.X4.2.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X4.3.m data.h2oStor.rateRtioMoleDryH2o.X4.4.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X4.5.m data.h2oStor.rateRtioMoleDryH2o.X4.6.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X4.7.m data.h2oStor.rateRtioMoleDryH2o.X4.8.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X4.9.m data.h2oStor.rateRtioMoleDryH2o.X5.m
## 1                            0.000315911                          0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X5.1.m data.h2oStor.rateRtioMoleDryH2o.X5.2.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X5.3.m data.h2oStor.rateRtioMoleDryH2o.X5.4.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X5.5.m data.h2oStor.rateRtioMoleDryH2o.X5.6.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X5.7.m data.h2oStor.rateRtioMoleDryH2o.X5.8.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X5.9.m data.h2oStor.rateRtioMoleDryH2o.X6.m
## 1                            0.000315911                          0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X6.1.m data.h2oStor.rateRtioMoleDryH2o.X6.2.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X6.3.m data.h2oStor.rateRtioMoleDryH2o.X6.4.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X6.5.m data.h2oStor.rateRtioMoleDryH2o.X6.6.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X6.7.m data.h2oStor.rateRtioMoleDryH2o.X6.8.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X6.9.m data.h2oStor.rateRtioMoleDryH2o.X7.m
## 1                            0.000315911                          0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X7.1.m data.h2oStor.rateRtioMoleDryH2o.X7.2.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X7.3.m data.h2oStor.rateRtioMoleDryH2o.X7.4.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X7.5.m data.h2oStor.rateRtioMoleDryH2o.X7.6.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X7.7.m data.h2oStor.rateRtioMoleDryH2o.X7.8.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X7.9.m data.h2oStor.rateRtioMoleDryH2o.X8.m
## 1                            0.000315911                          0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X8.1.m data.h2oStor.rateRtioMoleDryH2o.X8.2.m
## 1                            0.000315911                            0.000315911
##   data.h2oStor.rateRtioMoleDryH2o.X8.3.m data.h2oStor.rateRtioMoleDryH2o.X8.4.m data.tempStor.rateTemp.X0.1.m
## 1                            0.000315911                            0.000315911                 -0.0001014444
##   data.tempStor.rateTemp.X0.2.m data.tempStor.rateTemp.X0.3.m data.tempStor.rateTemp.X0.4.m
## 1                 -0.0001014444                 -0.0001014444                 -0.0001014444
##   data.tempStor.rateTemp.X0.5.m data.tempStor.rateTemp.X0.6.m data.tempStor.rateTemp.X0.7.m
## 1                 -0.0001014444                 -0.0001050874                  -0.000111159
##   data.tempStor.rateTemp.X0.8.m data.tempStor.rateTemp.X0.9.m data.tempStor.rateTemp.X1.m
## 1                 -0.0001172305                 -0.0001233021               -0.0001293737
##   data.tempStor.rateTemp.X1.1.m data.tempStor.rateTemp.X1.2.m data.tempStor.rateTemp.X1.3.m
## 1                 -0.0001354453                 -0.0001415168                 -0.0001475884
##   data.tempStor.rateTemp.X1.4.m data.tempStor.rateTemp.X1.5.m data.tempStor.rateTemp.X1.6.m
## 1                   -0.00015366                 -0.0001597315                 -0.0001658031
##   data.tempStor.rateTemp.X1.7.m data.tempStor.rateTemp.X1.8.m data.tempStor.rateTemp.X1.9.m
## 1                 -0.0001718747                 -0.0001779463                 -0.0001840178
##   data.tempStor.rateTemp.X2.m data.tempStor.rateTemp.X2.1.m data.tempStor.rateTemp.X2.2.m
## 1                -0.000185739                 -0.0001869767                 -0.0001882144
##   data.tempStor.rateTemp.X2.3.m data.tempStor.rateTemp.X2.4.m data.tempStor.rateTemp.X2.5.m
## 1                 -0.0001894521                 -0.0001906899                 -0.0001919276
##   data.tempStor.rateTemp.X2.6.m data.tempStor.rateTemp.X2.7.m data.tempStor.rateTemp.X2.8.m
## 1                 -0.0001931653                 -0.0001944031                 -0.0001956408
##   data.tempStor.rateTemp.X2.9.m data.tempStor.rateTemp.X3.m data.tempStor.rateTemp.X3.1.m
## 1                 -0.0001968785               -0.0001981162                  -0.000199354
##   data.tempStor.rateTemp.X3.2.m data.tempStor.rateTemp.X3.3.m data.tempStor.rateTemp.X3.4.m
## 1                 -0.0002005917                 -0.0002018294                 -0.0002030672
##   data.tempStor.rateTemp.X3.5.m data.tempStor.rateTemp.X3.6.m data.tempStor.rateTemp.X3.7.m
## 1                 -0.0002043049                 -0.0002055426                 -0.0002067803
##   data.tempStor.rateTemp.X3.8.m data.tempStor.rateTemp.X3.9.m data.tempStor.rateTemp.X4.m
## 1                 -0.0002080181                 -0.0002092558               -0.0002104935
##   data.tempStor.rateTemp.X4.1.m data.tempStor.rateTemp.X4.2.m data.tempStor.rateTemp.X4.3.m
## 1                 -0.0002117313                  -0.000212969                 -0.0002142067
##   data.tempStor.rateTemp.X4.4.m data.tempStor.rateTemp.X4.5.m data.tempStor.rateTemp.X4.6.m
## 1                 -0.0002154444                 -0.0002172161                 -0.0002189878
##   data.tempStor.rateTemp.X4.7.m data.tempStor.rateTemp.X4.8.m data.tempStor.rateTemp.X4.9.m
## 1                 -0.0002207595                 -0.0002225312                 -0.0002243029
##   data.tempStor.rateTemp.X5.m data.tempStor.rateTemp.X5.1.m data.tempStor.rateTemp.X5.2.m
## 1               -0.0002260746                 -0.0002278463                  -0.000229618
##   data.tempStor.rateTemp.X5.3.m data.tempStor.rateTemp.X5.4.m data.tempStor.rateTemp.X5.5.m
## 1                 -0.0002313896                 -0.0002331613                  -0.000234933
##   data.tempStor.rateTemp.X5.6.m data.tempStor.rateTemp.X5.7.m data.tempStor.rateTemp.X5.8.m
## 1                 -0.0002367047                 -0.0002384764                 -0.0002402481
##   data.tempStor.rateTemp.X5.9.m data.tempStor.rateTemp.X6.m data.tempStor.rateTemp.X6.1.m
## 1                 -0.0002420198               -0.0002437915                 -0.0002455631
##   data.tempStor.rateTemp.X6.2.m data.tempStor.rateTemp.X6.3.m data.tempStor.rateTemp.X6.4.m
## 1                 -0.0002473348                 -0.0002491065                 -0.0002508782
##   data.tempStor.rateTemp.X6.5.m data.tempStor.rateTemp.X6.6.m data.tempStor.rateTemp.X6.7.m
## 1                 -0.0002526499                 -0.0002544216                 -0.0002561933
##   data.tempStor.rateTemp.X6.8.m data.tempStor.rateTemp.X6.9.m data.tempStor.rateTemp.X7.m
## 1                  -0.000257965                 -0.0002597367               -0.0002615083
##   data.tempStor.rateTemp.X7.1.m data.tempStor.rateTemp.X7.2.m data.tempStor.rateTemp.X7.3.m
## 1                   -0.00026328                 -0.0002650517                 -0.0002668234
##   data.tempStor.rateTemp.X7.4.m data.tempStor.rateTemp.X7.5.m data.tempStor.rateTemp.X7.6.m
## 1                 -0.0002685951                 -0.0002703668                 -0.0002721385
##   data.tempStor.rateTemp.X7.7.m data.tempStor.rateTemp.X7.8.m data.tempStor.rateTemp.X7.9.m
## 1                 -0.0002739102                 -0.0002756819                 -0.0002774535
##   data.tempStor.rateTemp.X8.m data.tempStor.rateTemp.X8.1.m data.tempStor.rateTemp.X8.2.m
## 1               -0.0002792252                 -0.0002809969                 -0.0002827686
##   data.tempStor.rateTemp.X8.3.m data.tempStor.rateTemp.X8.4.m qfqm.co2Stor.rateRtioMoleDryCo2.X0.1.m
## 1                 -0.0002845403                  -0.000286312                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X0.2.m qfqm.co2Stor.rateRtioMoleDryCo2.X0.3.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X0.4.m qfqm.co2Stor.rateRtioMoleDryCo2.X0.5.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X0.6.m qfqm.co2Stor.rateRtioMoleDryCo2.X0.7.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X0.8.m qfqm.co2Stor.rateRtioMoleDryCo2.X0.9.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X1.m qfqm.co2Stor.rateRtioMoleDryCo2.X1.1.m
## 1                                    1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X1.2.m qfqm.co2Stor.rateRtioMoleDryCo2.X1.3.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X1.4.m qfqm.co2Stor.rateRtioMoleDryCo2.X1.5.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X1.6.m qfqm.co2Stor.rateRtioMoleDryCo2.X1.7.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X1.8.m qfqm.co2Stor.rateRtioMoleDryCo2.X1.9.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X2.m qfqm.co2Stor.rateRtioMoleDryCo2.X2.1.m
## 1                                    1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X2.2.m qfqm.co2Stor.rateRtioMoleDryCo2.X2.3.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X2.4.m qfqm.co2Stor.rateRtioMoleDryCo2.X2.5.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X2.6.m qfqm.co2Stor.rateRtioMoleDryCo2.X2.7.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X2.8.m qfqm.co2Stor.rateRtioMoleDryCo2.X2.9.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X3.m qfqm.co2Stor.rateRtioMoleDryCo2.X3.1.m
## 1                                    1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X3.2.m qfqm.co2Stor.rateRtioMoleDryCo2.X3.3.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X3.4.m qfqm.co2Stor.rateRtioMoleDryCo2.X3.5.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X3.6.m qfqm.co2Stor.rateRtioMoleDryCo2.X3.7.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X3.8.m qfqm.co2Stor.rateRtioMoleDryCo2.X3.9.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X4.m qfqm.co2Stor.rateRtioMoleDryCo2.X4.1.m
## 1                                    1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X4.2.m qfqm.co2Stor.rateRtioMoleDryCo2.X4.3.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X4.4.m qfqm.co2Stor.rateRtioMoleDryCo2.X4.5.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X4.6.m qfqm.co2Stor.rateRtioMoleDryCo2.X4.7.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X4.8.m qfqm.co2Stor.rateRtioMoleDryCo2.X4.9.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X5.m qfqm.co2Stor.rateRtioMoleDryCo2.X5.1.m
## 1                                    1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X5.2.m qfqm.co2Stor.rateRtioMoleDryCo2.X5.3.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X5.4.m qfqm.co2Stor.rateRtioMoleDryCo2.X5.5.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X5.6.m qfqm.co2Stor.rateRtioMoleDryCo2.X5.7.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X5.8.m qfqm.co2Stor.rateRtioMoleDryCo2.X5.9.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X6.m qfqm.co2Stor.rateRtioMoleDryCo2.X6.1.m
## 1                                    1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X6.2.m qfqm.co2Stor.rateRtioMoleDryCo2.X6.3.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X6.4.m qfqm.co2Stor.rateRtioMoleDryCo2.X6.5.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X6.6.m qfqm.co2Stor.rateRtioMoleDryCo2.X6.7.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X6.8.m qfqm.co2Stor.rateRtioMoleDryCo2.X6.9.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X7.m qfqm.co2Stor.rateRtioMoleDryCo2.X7.1.m
## 1                                    1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X7.2.m qfqm.co2Stor.rateRtioMoleDryCo2.X7.3.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X7.4.m qfqm.co2Stor.rateRtioMoleDryCo2.X7.5.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X7.6.m qfqm.co2Stor.rateRtioMoleDryCo2.X7.7.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X7.8.m qfqm.co2Stor.rateRtioMoleDryCo2.X7.9.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X8.m qfqm.co2Stor.rateRtioMoleDryCo2.X8.1.m
## 1                                    1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X8.2.m qfqm.co2Stor.rateRtioMoleDryCo2.X8.3.m
## 1                                      1                                      1
##   qfqm.co2Stor.rateRtioMoleDryCo2.X8.4.m qfqm.h2oStor.rateRtioMoleDryH2o.X0.1.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X0.2.m qfqm.h2oStor.rateRtioMoleDryH2o.X0.3.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X0.4.m qfqm.h2oStor.rateRtioMoleDryH2o.X0.5.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X0.6.m qfqm.h2oStor.rateRtioMoleDryH2o.X0.7.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X0.8.m qfqm.h2oStor.rateRtioMoleDryH2o.X0.9.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X1.m qfqm.h2oStor.rateRtioMoleDryH2o.X1.1.m
## 1                                    1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X1.2.m qfqm.h2oStor.rateRtioMoleDryH2o.X1.3.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X1.4.m qfqm.h2oStor.rateRtioMoleDryH2o.X1.5.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X1.6.m qfqm.h2oStor.rateRtioMoleDryH2o.X1.7.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X1.8.m qfqm.h2oStor.rateRtioMoleDryH2o.X1.9.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X2.m qfqm.h2oStor.rateRtioMoleDryH2o.X2.1.m
## 1                                    1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X2.2.m qfqm.h2oStor.rateRtioMoleDryH2o.X2.3.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X2.4.m qfqm.h2oStor.rateRtioMoleDryH2o.X2.5.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X2.6.m qfqm.h2oStor.rateRtioMoleDryH2o.X2.7.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X2.8.m qfqm.h2oStor.rateRtioMoleDryH2o.X2.9.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X3.m qfqm.h2oStor.rateRtioMoleDryH2o.X3.1.m
## 1                                    1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X3.2.m qfqm.h2oStor.rateRtioMoleDryH2o.X3.3.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X3.4.m qfqm.h2oStor.rateRtioMoleDryH2o.X3.5.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X3.6.m qfqm.h2oStor.rateRtioMoleDryH2o.X3.7.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X3.8.m qfqm.h2oStor.rateRtioMoleDryH2o.X3.9.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X4.m qfqm.h2oStor.rateRtioMoleDryH2o.X4.1.m
## 1                                    1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X4.2.m qfqm.h2oStor.rateRtioMoleDryH2o.X4.3.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X4.4.m qfqm.h2oStor.rateRtioMoleDryH2o.X4.5.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X4.6.m qfqm.h2oStor.rateRtioMoleDryH2o.X4.7.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X4.8.m qfqm.h2oStor.rateRtioMoleDryH2o.X4.9.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X5.m qfqm.h2oStor.rateRtioMoleDryH2o.X5.1.m
## 1                                    1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X5.2.m qfqm.h2oStor.rateRtioMoleDryH2o.X5.3.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X5.4.m qfqm.h2oStor.rateRtioMoleDryH2o.X5.5.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X5.6.m qfqm.h2oStor.rateRtioMoleDryH2o.X5.7.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X5.8.m qfqm.h2oStor.rateRtioMoleDryH2o.X5.9.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X6.m qfqm.h2oStor.rateRtioMoleDryH2o.X6.1.m
## 1                                    1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X6.2.m qfqm.h2oStor.rateRtioMoleDryH2o.X6.3.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X6.4.m qfqm.h2oStor.rateRtioMoleDryH2o.X6.5.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X6.6.m qfqm.h2oStor.rateRtioMoleDryH2o.X6.7.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X6.8.m qfqm.h2oStor.rateRtioMoleDryH2o.X6.9.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X7.m qfqm.h2oStor.rateRtioMoleDryH2o.X7.1.m
## 1                                    1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X7.2.m qfqm.h2oStor.rateRtioMoleDryH2o.X7.3.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X7.4.m qfqm.h2oStor.rateRtioMoleDryH2o.X7.5.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X7.6.m qfqm.h2oStor.rateRtioMoleDryH2o.X7.7.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X7.8.m qfqm.h2oStor.rateRtioMoleDryH2o.X7.9.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X8.m qfqm.h2oStor.rateRtioMoleDryH2o.X8.1.m
## 1                                    1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X8.2.m qfqm.h2oStor.rateRtioMoleDryH2o.X8.3.m
## 1                                      1                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.X8.4.m qfqm.tempStor.rateTemp.X0.1.m qfqm.tempStor.rateTemp.X0.2.m
## 1                                      1                             0                             0
##   qfqm.tempStor.rateTemp.X0.3.m qfqm.tempStor.rateTemp.X0.4.m qfqm.tempStor.rateTemp.X0.5.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X0.6.m qfqm.tempStor.rateTemp.X0.7.m qfqm.tempStor.rateTemp.X0.8.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X0.9.m qfqm.tempStor.rateTemp.X1.m qfqm.tempStor.rateTemp.X1.1.m
## 1                             0                           0                             0
##   qfqm.tempStor.rateTemp.X1.2.m qfqm.tempStor.rateTemp.X1.3.m qfqm.tempStor.rateTemp.X1.4.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X1.5.m qfqm.tempStor.rateTemp.X1.6.m qfqm.tempStor.rateTemp.X1.7.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X1.8.m qfqm.tempStor.rateTemp.X1.9.m qfqm.tempStor.rateTemp.X2.m
## 1                             0                             0                           0
##   qfqm.tempStor.rateTemp.X2.1.m qfqm.tempStor.rateTemp.X2.2.m qfqm.tempStor.rateTemp.X2.3.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X2.4.m qfqm.tempStor.rateTemp.X2.5.m qfqm.tempStor.rateTemp.X2.6.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X2.7.m qfqm.tempStor.rateTemp.X2.8.m qfqm.tempStor.rateTemp.X2.9.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X3.m qfqm.tempStor.rateTemp.X3.1.m qfqm.tempStor.rateTemp.X3.2.m
## 1                           0                             0                             0
##   qfqm.tempStor.rateTemp.X3.3.m qfqm.tempStor.rateTemp.X3.4.m qfqm.tempStor.rateTemp.X3.5.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X3.6.m qfqm.tempStor.rateTemp.X3.7.m qfqm.tempStor.rateTemp.X3.8.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X3.9.m qfqm.tempStor.rateTemp.X4.m qfqm.tempStor.rateTemp.X4.1.m
## 1                             0                           0                             0
##   qfqm.tempStor.rateTemp.X4.2.m qfqm.tempStor.rateTemp.X4.3.m qfqm.tempStor.rateTemp.X4.4.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X4.5.m qfqm.tempStor.rateTemp.X4.6.m qfqm.tempStor.rateTemp.X4.7.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X4.8.m qfqm.tempStor.rateTemp.X4.9.m qfqm.tempStor.rateTemp.X5.m
## 1                             0                             0                           0
##   qfqm.tempStor.rateTemp.X5.1.m qfqm.tempStor.rateTemp.X5.2.m qfqm.tempStor.rateTemp.X5.3.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X5.4.m qfqm.tempStor.rateTemp.X5.5.m qfqm.tempStor.rateTemp.X5.6.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X5.7.m qfqm.tempStor.rateTemp.X5.8.m qfqm.tempStor.rateTemp.X5.9.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X6.m qfqm.tempStor.rateTemp.X6.1.m qfqm.tempStor.rateTemp.X6.2.m
## 1                           0                             0                             0
##   qfqm.tempStor.rateTemp.X6.3.m qfqm.tempStor.rateTemp.X6.4.m qfqm.tempStor.rateTemp.X6.5.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X6.6.m qfqm.tempStor.rateTemp.X6.7.m qfqm.tempStor.rateTemp.X6.8.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X6.9.m qfqm.tempStor.rateTemp.X7.m qfqm.tempStor.rateTemp.X7.1.m
## 1                             0                           0                             0
##   qfqm.tempStor.rateTemp.X7.2.m qfqm.tempStor.rateTemp.X7.3.m qfqm.tempStor.rateTemp.X7.4.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X7.5.m qfqm.tempStor.rateTemp.X7.6.m qfqm.tempStor.rateTemp.X7.7.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X7.8.m qfqm.tempStor.rateTemp.X7.9.m qfqm.tempStor.rateTemp.X8.m
## 1                             0                             0                           0
##   qfqm.tempStor.rateTemp.X8.1.m qfqm.tempStor.rateTemp.X8.2.m qfqm.tempStor.rateTemp.X8.3.m
## 1                             0                             0                             0
##   qfqm.tempStor.rateTemp.X8.4.m
## 1                             0
##  [ reached 'max' / getOption("max.print") -- omitted 5 rows ]

6. Un-interpolated vertical profile data (Level 2)

The Level 2 data are interpolated in time but not in space. They contain the rates of change at each of the measurement heights.

Again, they can be extracted from the HDF5 files using stackEddy() with the same syntax:

prof.l2 <- stackEddy(filepath="~/Downloads/filesToStack00200/",
                 level="dp02")



head(prof.l2$HARV)

##   verticalPosition             timeBgn             timeEnd data.co2Stor.rateRtioMoleDryCo2.mean
## 1              010 2018-06-01 00:00:00 2018-06-01 00:29:59                                  NaN
## 2              010 2018-06-01 00:30:00 2018-06-01 00:59:59                          0.002666576
## 3              010 2018-06-01 01:00:00 2018-06-01 01:29:59                         -0.011224223
## 4              010 2018-06-01 01:30:00 2018-06-01 01:59:59                          0.006133056
## 5              010 2018-06-01 02:00:00 2018-06-01 02:29:59                         -0.019554655
## 6              010 2018-06-01 02:30:00 2018-06-01 02:59:59                         -0.007855632
##   data.h2oStor.rateRtioMoleDryH2o.mean data.tempStor.rateTemp.mean qfqm.co2Stor.rateRtioMoleDryCo2.qfFinl
## 1                                  NaN                2.583333e-05                                      1
## 2                                  NaN               -2.008056e-04                                      1
## 3                                  NaN               -1.901111e-04                                      1
## 4                                  NaN               -7.419444e-05                                      1
## 5                                  NaN               -1.537083e-04                                      1
## 6                                  NaN               -1.874861e-04                                      1
##   qfqm.h2oStor.rateRtioMoleDryH2o.qfFinl qfqm.tempStor.rateTemp.qfFinl
## 1                                      1                             0
## 2                                      1                             0
## 3                                      1                             0
## 4                                      1                             0
## 5                                      1                             0
## 6                                      1                             0

Note that here, as in the PAR data, there is a verticalPosition field. It has the same meaning as in the PAR data, indicating the tower level of the measurement.

7. Calibrated raw data (Level 1)

Level 1 (dp01) data are calibrated, and aggregated in time, but otherwise untransformed. Use Level 1 data for raw gas concentrations and atmospheric stable isotopes.

Using stackEddy() to extract Level 1 data requires additional inputs. The Level 1 files are too large to simply pull out all the variables by default, and they include multiple averaging intervals, which can't be merged. So two additional inputs are needed:

  • avg: The averaging interval to extract
  • var: One or more variables to extract

What variables are available, at what averaging intervals? Another function in the neonUtilities package, getVarsEddy(), returns a list of HDF5 file contents. It requires only one input, a filepath to a single NEON HDF5 file:

vars <- getVarsEddy("~/Downloads/filesToStack00200/NEON.D01.HARV.DP4.00200.001.nsae.2018-07.basic.20201020T201317Z.h5")
head(vars)

##    site level category system hor ver tmi       name       otype   dclass   dim  oth
## 5  HARV  dp01     data   amrs 000 060 01m angNedXaxs H5I_DATASET COMPOUND 43200 <NA>
## 6  HARV  dp01     data   amrs 000 060 01m angNedYaxs H5I_DATASET COMPOUND 43200 <NA>
## 7  HARV  dp01     data   amrs 000 060 01m angNedZaxs H5I_DATASET COMPOUND 43200 <NA>
## 9  HARV  dp01     data   amrs 000 060 30m angNedXaxs H5I_DATASET COMPOUND  1440 <NA>
## 10 HARV  dp01     data   amrs 000 060 30m angNedYaxs H5I_DATASET COMPOUND  1440 <NA>
## 11 HARV  dp01     data   amrs 000 060 30m angNedZaxs H5I_DATASET COMPOUND  1440 <NA>

Inputs to var can be any values from the name field in the table returned by getVarsEddy(). Let's take a look at CO2 and H2O, 13C in CO2 and 18O in H2O, at 30-minute aggregation. Let's look at Harvard Forest for these data, since deeper canopies generally have more interesting profiles:

iso <- stackEddy(filepath="~/Downloads/filesToStack00200/",
               level="dp01", var=c("rtioMoleDryCo2","rtioMoleDryH2o",
                                   "dlta13CCo2","dlta18OH2o"), avg=30)



head(iso$HARV)

##   verticalPosition             timeBgn             timeEnd data.co2Stor.rtioMoleDryCo2.mean
## 1              010 2018-06-01 00:00:00 2018-06-01 00:29:59                         509.3375
## 2              010 2018-06-01 00:30:00 2018-06-01 00:59:59                         502.2736
## 3              010 2018-06-01 01:00:00 2018-06-01 01:29:59                         521.6139
## 4              010 2018-06-01 01:30:00 2018-06-01 01:59:59                         469.6317
## 5              010 2018-06-01 02:00:00 2018-06-01 02:29:59                         484.7725
## 6              010 2018-06-01 02:30:00 2018-06-01 02:59:59                         476.8554
##   data.co2Stor.rtioMoleDryCo2.min data.co2Stor.rtioMoleDryCo2.max data.co2Stor.rtioMoleDryCo2.vari
## 1                        451.4786                        579.3518                         845.0795
## 2                        463.5470                        533.6622                         161.3652
## 3                        442.8649                        563.0518                         547.9924
## 4                        432.6588                        508.7463                         396.8379
## 5                        436.2842                        537.4641                         662.9449
## 6                        443.7055                        515.6598                         246.6969
##   data.co2Stor.rtioMoleDryCo2.numSamp data.co2Turb.rtioMoleDryCo2.mean data.co2Turb.rtioMoleDryCo2.min
## 1                                 235                               NA                              NA
## 2                                 175                               NA                              NA
## 3                                 235                               NA                              NA
## 4                                 175                               NA                              NA
## 5                                 235                               NA                              NA
## 6                                 175                               NA                              NA
##   data.co2Turb.rtioMoleDryCo2.max data.co2Turb.rtioMoleDryCo2.vari data.co2Turb.rtioMoleDryCo2.numSamp
## 1                              NA                               NA                                  NA
## 2                              NA                               NA                                  NA
## 3                              NA                               NA                                  NA
## 4                              NA                               NA                                  NA
## 5                              NA                               NA                                  NA
## 6                              NA                               NA                                  NA
##   data.h2oStor.rtioMoleDryH2o.mean data.h2oStor.rtioMoleDryH2o.min data.h2oStor.rtioMoleDryH2o.max
## 1                              NaN                             NaN                             NaN
## 2                              NaN                             NaN                             NaN
## 3                              NaN                             NaN                             NaN
## 4                              NaN                             NaN                             NaN
## 5                              NaN                             NaN                             NaN
## 6                              NaN                             NaN                             NaN
##   data.h2oStor.rtioMoleDryH2o.vari data.h2oStor.rtioMoleDryH2o.numSamp data.h2oTurb.rtioMoleDryH2o.mean
## 1                               NA                                   0                               NA
## 2                               NA                                   0                               NA
## 3                               NA                                   0                               NA
## 4                               NA                                   0                               NA
## 5                               NA                                   0                               NA
## 6                               NA                                   0                               NA
##   data.h2oTurb.rtioMoleDryH2o.min data.h2oTurb.rtioMoleDryH2o.max data.h2oTurb.rtioMoleDryH2o.vari
## 1                              NA                              NA                               NA
## 2                              NA                              NA                               NA
## 3                              NA                              NA                               NA
## 4                              NA                              NA                               NA
## 5                              NA                              NA                               NA
## 6                              NA                              NA                               NA
##   data.h2oTurb.rtioMoleDryH2o.numSamp data.isoCo2.dlta13CCo2.mean data.isoCo2.dlta13CCo2.min
## 1                                  NA                         NaN                        NaN
## 2                                  NA                   -11.40646                    -14.992
## 3                                  NA                         NaN                        NaN
## 4                                  NA                   -10.69318                    -14.065
## 5                                  NA                         NaN                        NaN
## 6                                  NA                   -11.02814                    -13.280
##   data.isoCo2.dlta13CCo2.max data.isoCo2.dlta13CCo2.vari data.isoCo2.dlta13CCo2.numSamp
## 1                        NaN                          NA                              0
## 2                     -8.022                   1.9624355                            305
## 3                        NaN                          NA                              0
## 4                     -7.385                   1.5766385                            304
## 5                        NaN                          NA                              0
## 6                     -7.966                   0.9929341                            308
##   data.isoCo2.rtioMoleDryCo2.mean data.isoCo2.rtioMoleDryCo2.min data.isoCo2.rtioMoleDryCo2.max
## 1                             NaN                            NaN                            NaN
## 2                        458.3546                        415.875                        531.066
## 3                             NaN                            NaN                            NaN
## 4                        439.9582                        415.777                        475.736
## 5                             NaN                            NaN                            NaN
## 6                        446.5563                        420.845                        468.312
##   data.isoCo2.rtioMoleDryCo2.vari data.isoCo2.rtioMoleDryCo2.numSamp data.isoCo2.rtioMoleDryH2o.mean
## 1                              NA                                  0                             NaN
## 2                        953.2212                                306                        22.11830
## 3                              NA                                  0                             NaN
## 4                        404.0365                                306                        22.38925
## 5                              NA                                  0                             NaN
## 6                        138.7560                                309                        22.15731
##   data.isoCo2.rtioMoleDryH2o.min data.isoCo2.rtioMoleDryH2o.max data.isoCo2.rtioMoleDryH2o.vari
## 1                            NaN                            NaN                              NA
## 2                       21.85753                       22.34854                      0.01746926
## 3                            NaN                            NaN                              NA
## 4                       22.09775                       22.59945                      0.02626762
## 5                            NaN                            NaN                              NA
## 6                       22.06641                       22.26493                      0.00277579
##   data.isoCo2.rtioMoleDryH2o.numSamp data.isoH2o.dlta18OH2o.mean data.isoH2o.dlta18OH2o.min
## 1                                  0                         NaN                        NaN
## 2                                 85                   -12.24437                    -12.901
## 3                                  0                         NaN                        NaN
## 4                                 84                   -12.04580                    -12.787
## 5                                  0                         NaN                        NaN
## 6                                 80                   -11.81500                    -12.375
##   data.isoH2o.dlta18OH2o.max data.isoH2o.dlta18OH2o.vari data.isoH2o.dlta18OH2o.numSamp
## 1                        NaN                          NA                              0
## 2                    -11.569                  0.03557313                            540
## 3                        NaN                          NA                              0
## 4                    -11.542                  0.03970481                            539
## 5                        NaN                          NA                              0
## 6                    -11.282                  0.03498614                            540
##   data.isoH2o.rtioMoleDryH2o.mean data.isoH2o.rtioMoleDryH2o.min data.isoH2o.rtioMoleDryH2o.max
## 1                             NaN                            NaN                            NaN
## 2                        20.89354                       20.36980                       21.13160
## 3                             NaN                            NaN                            NaN
## 4                        21.12872                       20.74663                       21.33272
## 5                             NaN                            NaN                            NaN
## 6                        20.93480                       20.63463                       21.00702
##   data.isoH2o.rtioMoleDryH2o.vari data.isoH2o.rtioMoleDryH2o.numSamp qfqm.co2Stor.rtioMoleDryCo2.qfFinl
## 1                              NA                                  0                                  1
## 2                     0.025376207                                540                                  1
## 3                              NA                                  0                                  1
## 4                     0.017612293                                540                                  1
## 5                              NA                                  0                                  1
## 6                     0.003805751                                540                                  1
##   qfqm.co2Turb.rtioMoleDryCo2.qfFinl qfqm.h2oStor.rtioMoleDryH2o.qfFinl qfqm.h2oTurb.rtioMoleDryH2o.qfFinl
## 1                                 NA                                  1                                 NA
## 2                                 NA                                  1                                 NA
## 3                                 NA                                  1                                 NA
## 4                                 NA                                  1                                 NA
## 5                                 NA                                  1                                 NA
## 6                                 NA                                  1                                 NA
##   qfqm.isoCo2.dlta13CCo2.qfFinl qfqm.isoCo2.rtioMoleDryCo2.qfFinl qfqm.isoCo2.rtioMoleDryH2o.qfFinl
## 1                             1                                 1                                 1
## 2                             0                                 0                                 0
## 3                             1                                 1                                 1
## 4                             0                                 0                                 0
## 5                             1                                 1                                 1
## 6                             0                                 0                                 0
##   qfqm.isoH2o.dlta18OH2o.qfFinl qfqm.isoH2o.rtioMoleDryH2o.qfFinl ucrt.co2Stor.rtioMoleDryCo2.mean
## 1                             1                                 1                       10.0248527
## 2                             0                                 0                        1.1077243
## 3                             1                                 1                        7.5181428
## 4                             0                                 0                        8.4017805
## 5                             1                                 1                        0.9465824
## 6                             0                                 0                        1.3629090
##   ucrt.co2Stor.rtioMoleDryCo2.vari ucrt.co2Stor.rtioMoleDryCo2.se ucrt.co2Turb.rtioMoleDryCo2.mean
## 1                        170.28091                      1.8963340                               NA
## 2                         34.29589                      0.9602536                               NA
## 3                        151.35746                      1.5270503                               NA
## 4                         93.41077                      1.5058703                               NA
## 5                         14.02753                      1.6795958                               NA
## 6                          8.50861                      1.1873064                               NA
##   ucrt.co2Turb.rtioMoleDryCo2.vari ucrt.co2Turb.rtioMoleDryCo2.se ucrt.h2oStor.rtioMoleDryH2o.mean
## 1                               NA                             NA                               NA
## 2                               NA                             NA                               NA
## 3                               NA                             NA                               NA
## 4                               NA                             NA                               NA
## 5                               NA                             NA                               NA
## 6                               NA                             NA                               NA
##   ucrt.h2oStor.rtioMoleDryH2o.vari ucrt.h2oStor.rtioMoleDryH2o.se ucrt.h2oTurb.rtioMoleDryH2o.mean
## 1                               NA                             NA                               NA
## 2                               NA                             NA                               NA
## 3                               NA                             NA                               NA
## 4                               NA                             NA                               NA
## 5                               NA                             NA                               NA
## 6                               NA                             NA                               NA
##   ucrt.h2oTurb.rtioMoleDryH2o.vari ucrt.h2oTurb.rtioMoleDryH2o.se ucrt.isoCo2.dlta13CCo2.mean
## 1                               NA                             NA                         NaN
## 2                               NA                             NA                   0.5812574
## 3                               NA                             NA                         NaN
## 4                               NA                             NA                   0.3653442
## 5                               NA                             NA                         NaN
## 6                               NA                             NA                   0.2428672
##   ucrt.isoCo2.dlta13CCo2.vari ucrt.isoCo2.dlta13CCo2.se ucrt.isoCo2.rtioMoleDryCo2.mean
## 1                         NaN                        NA                             NaN
## 2                   0.6827844                0.08021356                       16.931819
## 3                         NaN                        NA                             NaN
## 4                   0.3761155                0.07201605                       10.078698
## 5                         NaN                        NA                             NaN
## 6                   0.1544487                0.05677862                        7.140787
##   ucrt.isoCo2.rtioMoleDryCo2.vari ucrt.isoCo2.rtioMoleDryCo2.se ucrt.isoCo2.rtioMoleDryH2o.mean
## 1                             NaN                            NA                             NaN
## 2                       614.01630                      1.764965                      0.08848440
## 3                             NaN                            NA                             NaN
## 4                       196.99445                      1.149078                      0.08917388
## 5                             NaN                            NA                             NaN
## 6                        55.90843                      0.670111                              NA
##   ucrt.isoCo2.rtioMoleDryH2o.vari ucrt.isoCo2.rtioMoleDryH2o.se ucrt.isoH2o.dlta18OH2o.mean
## 1                             NaN                            NA                         NaN
## 2                      0.01226428                   0.014335993                  0.02544454
## 3                             NaN                            NA                         NaN
## 4                      0.01542679                   0.017683602                  0.01373503
## 5                             NaN                            NA                         NaN
## 6                              NA                   0.005890447                  0.01932110
##   ucrt.isoH2o.dlta18OH2o.vari ucrt.isoH2o.dlta18OH2o.se ucrt.isoH2o.rtioMoleDryH2o.mean
## 1                         NaN                        NA                             NaN
## 2                 0.003017400               0.008116413                      0.06937514
## 3                         NaN                        NA                             NaN
## 4                 0.002704220               0.008582764                      0.08489408
## 5                         NaN                        NA                             NaN
## 6                 0.002095066               0.008049170                      0.02813808
##   ucrt.isoH2o.rtioMoleDryH2o.vari ucrt.isoH2o.rtioMoleDryH2o.se
## 1                             NaN                            NA
## 2                     0.009640249                   0.006855142
## 3                             NaN                            NA
## 4                     0.008572288                   0.005710986
## 5                             NaN                            NA
## 6                     0.002551672                   0.002654748

Let's plot vertical profiles of CO2 and 13C in CO2 on a single day.

Here we'll use the time stamps in a different way, using grep() to select all of the records for a single day. And discard the verticalPosition values that are string values - those are the calibration gases.

iso.d <- iso$HARV[grep("2018-06-25", iso$HARV$timeBgn, fixed=T),]
iso.d <- iso.d[-which(is.na(as.numeric(iso.d$verticalPosition))),]

ggplot is well suited to these types of data, let's use it to plot the profiles. If you don't have the package yet, use install.packages() to install it first.

library(ggplot2)

Now we can plot CO2 relative to height on the tower, with separate lines for each time interval.

g <- ggplot(iso.d, aes(y=verticalPosition)) + 
  geom_path(aes(x=data.co2Stor.rtioMoleDryCo2.mean, 
                group=timeBgn, col=timeBgn)) + 
  theme(legend.position="none") + 
  xlab("CO2") + ylab("Tower level")
g

And the same plot for 13C in CO2:

g <- ggplot(iso.d, aes(y=verticalPosition)) + 
  geom_path(aes(x=data.isoCo2.dlta13CCo2.mean, 
                group=timeBgn, col=timeBgn)) + 
  theme(legend.position="none") + 
  xlab("d13C") + ylab("Tower level")
g

The legends are omitted for space, see if you can use the concentration and isotope ratio buildup and drawdown below the canopy to work out the times of day the different colors represent.

Compare tree height measured from the ground to a Lidar-based Canopy Height Model

An extremely common task for remote sensing researchers is to connect remote sensing data with data on the ground. This might be a research question in itself - what reflectance wavelengths are most closely correlated with a particular ground feature? - or a ground-truthing for extrapolation and prediction, or development or testing of a model.

This tutorial explores the relationship between a Lidar-derived canopy height model and tree heights measured from the ground, because these two datasets provide a straightforward introduction to thinking about how to relate different sources of data. They are a good exemplar for the two major components of connecting airborne and ground data:

  1. The mechanics: Finding the remotely sensed pixels that correspond to a given ground measurement
  2. The science: Considering biases in each data source, and the ways the measurements might differ even if neither is incorrect

We will explore these issues between these two datasets, and you can use what you learn here as a roadmap for making similar comparisons between different datasets.

The two NEON data products that estimate tree height:

  • DP3.30015.001, Ecosystem structure, aka Canopy Height Model (CHM)
  • DP1.10098.001, Vegetation structure

The CHM data are derived from the Lidar point cloud data collected by the remote sensing platform. The vegetation structure data are collected by by field staff on the ground.

We will be using data from the Wind River Experimental Forest (WREF) NEON field site located in Washington state. The predominant vegetation there is tall evergreen conifers.

Things You’ll Need To Complete This Tutorial

You will need the a recent version of R (4+) or Python (3.9+) loaded on your computer to complete this tutorial.

1. Setup

Start by installing and loading packages (if necessary) and setting options. Installation can be run once, then periodically to get package updates.

R

One of the packages we’ll be using, geoNEON, is only available via GitHub, so it’s installed using the devtools package. The other packages can be installed directly from CRAN.

install.packages("neonUtilities")
install.packages("neonOS")
install.packages("terra")
install.packages("devtools")
devtools::install_github("NEONScience/NEON-geolocation/geoNEON")

Now load packages. This needs to be done every time you run code. We’ll also set a working directory for data downloads.

library(terra)
## terra 1.7.78
library(neonUtilities)
library(neonOS)
library(geoNEON)

options(stringsAsFactors=F)

set working directory

adapt directory path for your system

wd <- "~/data"

Python

There are a variety of spatial packages available in Python; we’ll use rasterio and rioxarray. We’ll also use several modules that are installed automatically with standard Python installations.

pip install neonutilities
pip install geopandas
pip install rasterio
pip install rioxarray
pip install rasterstats

Now load packages.


import neonutilities as nu
import pandas as pd
import numpy as np
import rasterstats as rs
import geopandas as gpd
import rioxarray as rxr
import matplotlib.pyplot as plt
import matplotlib.collections
import rasterio
from rasterio import sample
from rasterio.enums import Resampling
import requests
import os

2. Vegetation structure data

In this section we’ll download the vegetation structure data, find the locations of the mapped trees, and join to the species and size data.

R

Download the vegetation structure data using the loadByProduct() function in the neonUtilities package. Inputs to the function are:

  • dpID: data product ID; woody vegetation structure = DP1.10098.001
  • site: (vector of) 4-letter site codes; Wind River = WREF
  • package: basic or expanded; we’ll download basic here
  • release: which data release to download; we’ll use RELEASE-2023
  • check.size: should this function prompt the user with an estimated download size? Set to FALSE here for ease of processing as a script, but good to leave as default TRUE when downloading a dataset for the first time.

Refer to the cheat sheet for the neonUtilities package for more details and the complete index of possible function inputs.

veglist <- loadByProduct(dpID="DP1.10098.001", 
                         site="WREF", 
                         package="basic", 
                         release="RELEASE-2024",
                         check.size = FALSE)

Python

Download the vegetation structure data using the load_by_product() function in the neonutilities package. Inputs to the function are:

  • dpid: data product ID; woody vegetation structure = DP1.10098.001
  • site: (vector of) 4-letter site codes; Wind River = WREF
  • package: basic or expanded; we’ll download basic here
  • release: which data release to download; we’ll use RELEASE-2023
  • check_size: should this function prompt the user with an estimated download size? Set to False here for ease of processing as a script, but good to leave as default True when downloading a dataset for the first time.

Refer to the cheat sheet for the neonUtilities package for more details and the complete index of possible function inputs. The cheat sheet is focused on the R package, but nearly all the inputs are the same.

veglist = nu.load_by_product(dpid="DP1.10098.001", 
                         site="WREF", 
                         package="basic", 
                         release="RELEASE-2024",
                         check_size = False)

Get tree locations

R

Use the getLocTOS() function in the geoNEON package to get precise locations for the tagged plants. Refer to the package documentation for more details.

vegmap <- getLocTOS(veglist$vst_mappingandtagging, 
                          "vst_mappingandtagging")

Python

NEON doesn’t currently offer a Python equivalent to the geoNEON R package, so we’ll calculate the tree locations step-by-step. The trees are mapped as distance and azimuth from a reference location. The reference location data are accessible on the NEON API. The steps in this calculation are described in the Data Product User Guide.

First, get the names of the reference locations, and query the NEON API to retrieve their location data:


vegmapall = veglist["vst_mappingandtagging"]
vegmap = vegmapall.loc[vegmapall["pointID"] != ""]
vegmap = vegmap.reindex()
vegmap["points"] = vegmap["namedLocation"] + "." + vegmap["pointID"]
vegpoints = list(set(list(vegmap["points"])))

easting = [] northing = [] coordinateUncertainty = [] elevationUncertainty = [] for i in vegpoints: vres = requests.get("https://data.neonscience.org/api/v0/locations/"+i) vreslist = vres.json() easting.append(vreslist["data"]["locationUtmEasting"]) northing.append(vreslist["data"]["locationUtmNorthing"]) props = pd.DataFrame.from_dict(vreslist["data"]["locationProperties"]) cuprop = props.loc[props["locationPropertyName"]=="Value for Coordinate uncertainty"]["locationPropertyValue"] coordinateUncertainty.append(cuprop[cuprop.index[0]]) euprop = props.loc[props["locationPropertyName"]=="Value for Elevation uncertainty"]["locationPropertyValue"] elevationUncertainty.append(euprop[euprop.index[0]])

ptdct = dict(points=vegpoints, easting=easting, northing=northing, coordinateUncertainty=coordinateUncertainty, elevationUncertainty=elevationUncertainty) ptfrm = pd.DataFrame.from_dict(ptdct) ptfrm.set_index("points", inplace=True)

vegmap = vegmap.join(ptfrm, on="points", how="inner")

Next, use the distance and azimuth data to calculate the precise locations of individuals, relative to the reference locations.


vegmap["adjEasting"] = (vegmap["easting"]
                        + vegmap["stemDistance"]
                        * np.sin(vegmap["stemAzimuth"]
                                   * np.pi / 180))

vegmap["adjNorthing"] = (vegmap["northing"] + vegmap["stemDistance"] * np.cos(vegmap["stemAzimuth"] * np.pi / 180))

Add to the uncertainty estimate to account for error in measurement from the reference location, as described in the User Guide.


vegmap["adjCoordinateUncertainty"] = vegmap["coordinateUncertainty"] + 0.6
vegmap["adjElevationUncertainty"] = vegmap["elevationUncertainty"] + 1

Combine location with tree traits

Now we have the mapped locations of individuals in the vst_mappingandtagging table, and the annual measurements of tree dimensions such as height and diameter in the vst_apparentindividual table. To bring these measurements together, join the two tables, using the joinTableNEON() function from the neonOS package. Refer to the Quick Start Guide for Vegetation structure for more information about the data tables and the joining instructions joinTableNEON() is using.

R

veg <- joinTableNEON(veglist$vst_apparentindividual, 
                     vegmap, 
                     name1="vst_apparentindividual",
                     name2="vst_mappingandtagging")

Python

Like the geoNEON package, there is not currently a Python equivalent to the neonOS package. Refer to the Quick Start Guide for Vegetation structure to find the data field to use to join the two tables.


veglist["vst_apparentindividual"].set_index("individualID", inplace=True)
veg = vegmap.join(veglist["vst_apparentindividual"],
                  on="individualID",
                  how="inner",
                  lsuffix="_MAT",
                  rsuffix="_AI")

Make a stem map

Let’s see what the data look like! Make a stem map, where each tree is mapped by a circle matching its size. This won’t look informative at the scale of the entire site, so we’ll subset to a single plot, WREF_075.

In addition to looking at only one plot, we’ll also target a single year. We want to match height measurements from the ground to remote sensing flights, so we need to pick a year when WREF was flown. We’ll use 2017. Use the eventID field from
vst_apparentindividual to find the 2017 measurements. We use the eventID rather than the date because sampling bouts for vegetation structure are carried out in the winter, to avoid the growing season, and can sometimes extend into the following calendar year.

Note that in both languages the input to the function that draws a circle is a radius, but stemDiameter is just that, a diameter, so we will need to divide by two. And stemDiameter is in centimeters, but the mapping scale is in meters, so we also need to divide by 100 to get the scale right.

R

veg2017 <- veg[which(veg$eventID.y=="vst_WREF_2017"),]

symbols(veg2017$adjEasting[which(veg2017$plotID=="WREF_075")], veg2017$adjNorthing[which(veg2017$plotID=="WREF_075")], circles=veg2017$stemDiameter[which(veg2017$plotID=="WREF_075")]/100/2, inches=F, xlab="Easting", ylab="Northing")

And now overlay the estimated uncertainty in the location of each stem, in blue:

symbols(veg2017$adjEasting[which(veg2017$plotID=="WREF_075")], 
        veg2017$adjNorthing[which(veg2017$plotID=="WREF_075")], 
        circles=veg2017$stemDiameter[which(veg2017$plotID=="WREF_075")]/100/2, 
        inches=F, xlab="Easting", ylab="Northing")
symbols(veg2017$adjEasting[which(veg2017$plotID=="WREF_075")], 
        veg2017$adjNorthing[which(veg2017$plotID=="WREF_075")], 
        circles=veg2017$adjCoordinateUncertainty[which(veg2017$plotID=="WREF_075")], 
        inches=F, add=T, fg="lightblue")

Python

veg2017 = veg.loc[veg["eventID_AI"]=="vst_WREF_2017"]
veg75 = veg2017.loc[veg2017["plotID_AI"]=="WREF_075"]

fig, ax = plt.subplots()

xy = np.array(tuple(zip(veg75.adjEasting, veg75.adjNorthing))) srad = veg75.stemDiameter/100/2 patches = [plt.Circle(center, size) for center, size in zip(xy, srad)]

coll = matplotlib.collections.PatchCollection(patches, facecolors="white", edgecolors="black") ax.add_collection(coll)

ax.margins(0.1) plt.show()

And now overlay the estimated uncertainty in the location of each stem, in blue:

fig, ax = plt.subplots()

sunc = veg75.adjCoordinateUncertainty patchunc = [plt.Circle(center, size) for center, size in zip(xy, sunc)]

coll = matplotlib.collections.PatchCollection(patches, facecolors="None", edgecolors="black") collunc = matplotlib.collections.PatchCollection(patchunc, facecolors="None", edgecolors="lightblue") ax.add_collection(coll) ax.add_collection(collunc)

ax.margins(0.1) plt.show()

3. Canopy height model data

Now we’ll download the CHM tile covering plot WREF_075. Several other plots are also covered by this tile. We could download all tiles that contain vegetation structure plots, but in this exercise we’re sticking to one tile to limit download size and processing time.

The tileByAOP() function in the neonUtilities package allows for download of remote sensing tiles based on easting and northing coordinates, so we’ll give it the coordinates of all the trees in plot WREF_075 and the data product ID, DP3.30015.001 (note that if WREF_075 crossed tile boundaries, this code would download all relevant tiles).

The download will include several metadata files as well as the data tile. Load the data tile into the environment using the terra package in R and the rasterio and `rioxarray`` packages in Python.

R

byTileAOP(dpID="DP3.30015.001", site="WREF", year=2017, 
          easting=veg2017$adjEasting[which(veg2017$plotID=="WREF_075")], 
          northing=veg2017$adjNorthing[which(veg2017$plotID=="WREF_075")],
          check.size=FALSE, savepath=wd)

chm <- rast(paste0(wd, "/DP3.30015.001/neon-aop-products/2017/FullSite/D16/2017_WREF_1/L3/DiscreteLidar/CanopyHeightModelGtif/NEON_D16_WREF_DP3_580000_5075000_CHM.tif"))

Let’s view the tile.

plot(chm, col=topo.colors(5))

Python

nu.by_tile_aop(dpid="DP3.30015.001", site="WREF", year="2017", 
          easting=list(veg75.adjEasting), 
          northing=list(veg75.adjNorthing),
          check_size=False, savepath=os.getcwd())

We’ll read in versions of the tile in both rasterio and rioxarray to enable the different data extractions we’ll need to do later in the tutorial.


chm = rasterio.open(os.getcwd() + "/DP3.30015.001/neon-aop-products/2017/FullSite/D16/2017_WREF_1/L3/DiscreteLidar/CanopyHeightModelGtif/NEON_D16_WREF_DP3_580000_5075000_CHM.tif")

chmx = rxr.open_rasterio(os.getcwd() + "/DP3.30015.001/neon-aop-products/2017/FullSite/D16/2017_WREF_1/L3/DiscreteLidar/CanopyHeightModelGtif/NEON_D16_WREF_DP3_580000_5075000_CHM.tif").squeeze()

Let’s view the tile.

plt.imshow(chm.read(1))
plt.show()

4. Comparing the two datasets

Now we have the heights of individual trees measured from the ground, and the height of the top surface of the canopy, measured from the air. There are many different ways to make a comparison between these two datasets! This section will walk through three different approaches.

Subset the data

First, subset the vegetation structure data to only the trees that fall within this tile. This step isn’t strictly necessary, but it will make the processing faster.

Note that although we downloaded this tile by targeting plot WREF_075, there are other plots in the area covered by this tile - from here forward, we’re working with all measured trees within the tile area.

R

vegsub <- veg2017[which(veg2017$adjEasting >= ext(chm)[1] &
                        veg2017$adjEasting <= ext(chm)[2] &
                        veg2017$adjNorthing >= ext(chm)[3] & 
                        veg2017$adjNorthing <= ext(chm)[4]),]

Python


vegsub = veg2017.loc[(veg2017["adjEasting"] >= chm.bounds[0]) &
                 (veg2017["adjEasting"] <= chm.bounds[1]) &
                 (veg2017["adjNorthing"] >= chm.bounds[2]) & 
                 (veg2017["adjNorthing"] <= chm.bounds[3])]
vegsub = vegsub.reset_index(drop=True)

Canopy height at mapped tree locations

Starting with a very simple first pass: get the CHM value matching the coordinates of each mapped plant. Then make a scatter plot of each tree’s height vs. the CHM value at its location.

R

The extract() function from the terra package gets the values from the tile at the given coordinates.

valCHM <- extract(chm, 
                  cbind(vegsub$adjEasting,
                  vegsub$adjNorthing))

plot(valCHM$NEON_D16_WREF_DP3_580000_5075000_CHM~ vegsub$height, pch=20, xlab="Height", ylab="Canopy height model") lines(c(0,50), c(0,50), col="grey")

How strong is the correlation between the ground and lidar measurements?

cor(valCHM$NEON_D16_WREF_DP3_580000_5075000_CHM, 
    vegsub$height, use="complete")
## [1] 0.4036681

Python

The sample_gen() function from the rasterio.sample module gets the values from the tile at the given coordinates.

valCHM = list(sample.sample_gen(chm, 
                                tuple(zip(vegsub["adjEasting"], 
                                          vegsub["adjNorthing"])),
                                masked=True))

fig, ax = plt.subplots()

ax.plot((0,50), (0,50), linewidth=1, color="black") ax.scatter(vegsub.height, valCHM, s=1)

ax.set_xlabel("Height") ax.set_ylabel("Canopy height model")

plt.show()

How strong is the correlation between the ground and lidar measurements?

CHMlist = np.array([c.tolist()[0] for c in valCHM])
idx = np.intersect1d(np.where(np.isfinite(vegsub.height)), 
                     np.where(CHMlist != None))
np.corrcoef(vegsub.height[idx], list(CHMlist[idx]))[0,1]
## 0.40366813643317934

Canopy height within a buffer of mapped tree locations

Now we remember there is uncertainty in the location of each tree, so the precise pixel it corresponds to might not be the right one. Let’s try adding a buffer to the extraction function, to get the tallest tree within the uncertainty of the location of each tree.

R

valCHMbuff <- extract(chm, 
                  buffer(vect(cbind(vegsub$adjEasting,
                  vegsub$adjNorthing)),
                  width=vegsub$adjCoordinateUncertainty),
                  fun=max)

plot(valCHMbuff$NEON_D16_WREF_DP3_580000_5075000_CHM~ vegsub$height, pch=20, xlab="Height", ylab="Canopy height model") lines(c(0,50), c(0,50), col="grey")

cor(valCHMbuff$NEON_D16_WREF_DP3_580000_5075000_CHM, 
    vegsub$height, use="complete")
## [1] 0.3903361

Python

To extract values using a buffer in Python, we need to create a shapefile of the buffered locations, and then extract the maximum value for each area in the shapefile.


vegloc = vegsub[["individualID","adjEasting","adjNorthing","adjCoordinateUncertainty"]]
v = vegloc.rename(columns={"individualID": "indID", "adjEasting": "easting",
               "adjNorthing": "northing", "adjCoordinateUncertainty": "coordUnc"},
               inplace=False)

gdf = gpd.GeoDataFrame( v, geometry=gpd.points_from_xy(v.easting, v.northing)) gdf["geometry"] = gdf["geometry"].buffer(distance=gdf["coordUnc"]) gdf.to_file(os.getcwd() + "/trees_with_buffer.shp")

chm_height = rs.zonal_stats(os.getcwd() + "/trees_with_buffer.shp", chmx.values, affine=chmx.rio.transform(), nodata=-9999, stats="max")

valCHMbuff = [h["max"] for h in chm_height]

And plot the results:

fig, ax = plt.subplots()

ax.plot((0,50), (0,50), linewidth=1, color="black") ax.scatter(vegsub.height, valCHMbuff, s=1)

ax.set_xlabel("Height") ax.set_ylabel("Canopy height model")

plt.show()

CHMbufflist = np.array(valCHMbuff)
idx = np.intersect1d(np.where(np.isfinite(vegsub.height)), 
                     np.where(CHMbufflist != None))
np.corrcoef(vegsub.height[idx], list(CHMbufflist[idx]))[0,1]
## 0.39033606753955524

Adding the buffer has actually made our correlation slightly weaker. Let’s think about the data.

There are a lot of points clustered on the 1-1 line, but there is also a cloud of points above the line, where the measured height is lower than the canopy height model at the same coordinates. This makes sense, because the tree height data include the understory. There are many plants measured in the vegetation structure data that are not at the top of the canopy, and the CHM sees only the top surface of the canopy.

This also explains why the buffer didn’t improve things. Finding the highest CHM value within the uncertainty of a tree should improve the fit for the tallest trees, but it’s likely to make the fit worse for the understory trees.

How to exclude understory plants from this analysis? Again, there are many possible approaches. We’ll try out two, one map-centric and one tree-centric.

Compare maximum height within 10 meter pixels

Starting with the map-centric approach: select a pixel size, and aggregate both the vegetation structure data and the CHM data to find the tallest point in each pixel. Let’s try this with 10m pixels.

Start by rounding the coordinates of the vegetation structure data, to create 10m bins. Use floor() instead of round() so each tree ends up in the pixel with the same numbering as the raster pixels (the rasters/pixels are numbered by their southwest corners).

R

easting10 <- 10*floor(vegsub$adjEasting/10)
northing10 <- 10*floor(vegsub$adjNorthing/10)
vegsub <- cbind(vegsub, easting10, northing10)

Use the aggregate() function to get the tallest tree in each 10m bin.

vegbin <- stats::aggregate(vegsub, 
                           by=list(vegsub$easting10, 
                                   vegsub$northing10), 
                           FUN=max)

To get the CHM values for the 10m bins, use the terra package version of the aggregate() function. Let’s take a look at the lower-resolution image we get as a result.

CHM10 <- terra::aggregate(chm, fact=10, fun=max)
plot(CHM10, col=topo.colors(5))

Use the extract() function again to get the values from each pixel. Our grids are numbered by the corners, so add 5 to each tree coordinate to make sure it’s in the correct pixel.

vegbin$easting10 <- vegbin$easting10 + 5
vegbin$northing10 <- vegbin$northing10 + 5
binCHM <- extract(CHM10, cbind(vegbin$easting10, 
                               vegbin$northing10))
plot(binCHM$NEON_D16_WREF_DP3_580000_5075000_CHM~
       vegbin$height, pch=20, 
     xlab="Height", ylab="Canopy height model")
lines(c(0,50), c(0,50), col="grey")

cor(binCHM$NEON_D16_WREF_DP3_580000_5075000_CHM, 
    vegbin$height, use="complete")
## [1] 0.3472434

Python


vegsub["easting10"] = 10*np.floor(vegsub.adjEasting/10)
vegsub["northing10"] = 10*np.floor(vegsub.adjNorthing/10)
vegsubloc = vegsub[["height","easting10","northing10"]]

Use the groupby() function to get the tallest tree in each 10m bin.


vegbin = vegsubloc.groupby(["easting10", "northing10"]).max().add_suffix('_max').reset_index()

To get the CHM values for the 10m bins, use the warp.reproject() method in the rasterio package.


target_res = (10, 10)

with rasterio.open(os.getcwd() + "/DP3.30015.001/neon-aop-products/2017/FullSite/D16/2017_WREF_1/L3/DiscreteLidar/CanopyHeightModelGtif/NEON_D16_WREF_DP3_580000_5075000_CHM.tif") as src: data, transform = rasterio.warp.reproject(source=src.read(), src_transform=src.transform, src_crs=src.crs, dst_crs=src.crs, dst_nodata=src.nodata, dst_resolution=target_res, resampling=Resampling.max) profile = src.profile profile.update(transform=transform, driver='GTiff', height=data.shape[1], width=data.shape[2])

 with rasterio.open(os.getcwd() + &#39;/CHM_10m.tif&#39;, &#39;w&#39;, **profile) as dst:
                dst.write(data)

chm10 = rasterio.open(os.getcwd() + '/CHM_10m.tif')

Let’s take a look at the lower-resolution image we get as a result.

plt.imshow(chm10.read(1))
plt.show()

Use the sample() function again to get the values from the pixel corresponding to each maximum tree height estimate. Our grids are numbered by the corners, so add 5 to each tree coordinate to make sure it’s in the correct pixel.

valCHM10 = list(sample.sample_gen(chm10, tuple(zip(vegbin["easting10"]+5,
                                                   vegbin["northing10"]+5)),
                                                   masked=True))

fig, ax = plt.subplots()

ax.plot((0,50), (0,50), linewidth=1, color="black") ax.scatter(vegbin.height_max, valCHM10, s=1)

ax.set_xlabel("Height") ax.set_ylabel("Canopy height model")

plt.show()

CHM10list = np.array([c.tolist()[0] for c in valCHM10])
idx = np.intersect1d(np.where(np.isfinite(vegbin.height_max)), 
                     np.where(CHM10list != None))
np.corrcoef(vegbin.height_max[idx], list(CHM10list[idx]))[0,1]
## 0.346718246893291

The understory points are thinned out substantially, but so are the rest, and we’ve lost a lot of the shorter points. We’ve lost a lot of data overall by going to a lower resolution.

Let’s try and see if we can identify the tallest trees by another approach, using the trees as the starting point instead of map area.

Find the top-of-canopy trees and compare to model

Start by sorting the veg structure data by height.

R

vegsub <- vegsub[order(vegsub$height, 
                       decreasing=T),]

Now, for each tree, let’s estimate which nearby trees might be beneath its canopy, and discard those points. To do this:

  1. Calculate the distance of each tree from the target tree.
  2. Pick a reasonable estimate for canopy size, and discard shorter trees within that radius. The radius I used is 0.3 times the height, based on some rudimentary googling about Douglas fir allometry. It could definitely be improved on!
  3. Iterate over all trees.

We’ll use a simple for loop to do this:

vegfil <- vegsub
for(i in 1:nrow(vegsub)) {
    if(is.na(vegfil$height[i]))
        next
    dist <- sqrt((vegsub$adjEasting[i]-vegsub$adjEasting)^2 + 
                (vegsub$adjNorthing[i]-vegsub$adjNorthing)^2)
    vegfil$height[which(dist<0.3*vegsub$height[i] & 
                        vegsub$height<vegsub$height[i])] <- NA
}

vegfil <- vegfil[which(!is.na(vegfil$height)),]

Now extract the raster values, as above.

filterCHM <- extract(chm, 
                     cbind(vegfil$adjEasting, 
                           vegfil$adjNorthing))
plot(filterCHM$NEON_D16_WREF_DP3_580000_5075000_CHM~
       vegfil$height, pch=20, 
     xlab="Height", ylab="Canopy height model")
lines(c(0,50), c(0,50), col="grey")

cor(filterCHM$NEON_D16_WREF_DP3_580000_5075000_CHM,
    vegfil$height)
## [1] 0.8377803

Python


vegfil = vegsub.sort_values(by="height", ascending=False, ignore_index=True)

Now, for each tree, let’s estimate which nearby trees might be beneath its canopy, and discard those points. To do this:

  1. Calculate the distance of each tree from the target tree.
  2. Pick a reasonable estimate for canopy size, and discard shorter trees within that radius. The radius I used is 0.3 times the height, based on some rudimentary googling about Douglas fir allometry. It could definitely be improved on!
  3. Iterate over all trees.

We’ll use a simple for loop to do this:


height = vegfil.height.reset_index()
for i in vegfil.index:
    if height.height[i] is None:
        pass
    else:
        dist = np.sqrt(np.square(vegfil.adjEasting[i]-vegfil.adjEasting) + 
                       np.square(vegfil.adjNorthing[i]-vegfil.adjNorthing))
        idx = vegfil.index[(vegfil.height<height.height[i]) & (dist<0.3*height.height[i])]
        height.loc[idx, "height"] = None

Now extract the raster values, as above.

filterCHM = list(sample.sample_gen(chm, tuple(zip(vegfil["adjEasting"],
                                                  vegfil["adjNorthing"])),
                                                  masked=True))

fig, ax = plt.subplots()

ax.plot((0,50), (0,50), linewidth=1, color="black") ax.scatter(height.height, filterCHM, s=1)

ax.set_xlabel("Height") ax.set_ylabel("Canopy height model")

plt.show()

filCHMlist = np.array([c.tolist()[0] for c in filterCHM])
idx = np.intersect1d(np.where(np.isfinite(height.height)), 
                     np.where(filCHMlist != None))
np.corrcoef(height.height[idx], list(filCHMlist[idx]))[0,1]
## 0.8380927468867392

This is quite a bit better! There are still several understory points we failed to exclude, but we were able to filter out most of the understory without losing so many overstory points.

Remove dead trees

Let’s try one more thing. The plantStatus field in the veg structure data indicates whether a plant is dead, broken, or otherwise damaged. In theory, a dead or broken tree can still be the tallest thing around, but it’s less likely, and it’s also less likely to get a good Lidar return. Exclude all trees that aren’t alive:

R

vegfil <- vegfil[which(vegfil$plantStatus=="Live"),]

filterCHM <- extract(chm, cbind(vegfil$adjEasting, vegfil$adjNorthing))

plot(filterCHM$NEON_D16_WREF_DP3_580000_5075000_CHM~ vegfil$height, pch=20, xlab="Height", ylab="Canopy height model")

lines(c(0,50), c(0,50), col="grey")

cor(filterCHM$NEON_D16_WREF_DP3_580000_5075000_CHM,
    vegfil$height)
## [1] 0.9145612

Python

idx = vegfil.index[vegfil.plantStatus!="Live"]
height.loc[idx, "height"] = None

fig, ax = plt.subplots()

ax.plot((0,50), (0,50), linewidth=1, color="black") ax.scatter(height.height, filterCHM, s=1)

ax.set_xlabel("Height") ax.set_ylabel("Canopy height model")

plt.show()

idx = np.intersect1d(np.where(np.isfinite(height.height)), 
                     np.where(filCHMlist != None))
np.corrcoef(height.height[idx], list(filCHMlist[idx]))[0,1]
## 0.9146181359857672

Nice!

Final thoughts on intercomparison

This tutorial has explored different ways of relating remotely sensed to ground-based data. Although some of the options we tried resulted in stronger correlations than others, the approach you choose will probably depend most on the research questions you are trying to answer. The goal of this tutorial has been to help you think through the possibilities, and identify some of the pitfalls and biases.

Speaking of biases: however we slice the data, there is a noticeable bias even in the strongly correlated values. The CHM heights are generally a bit shorter than the ground-based estimates of tree height. There are two biases in the CHM data that contribute to this. (1) Lidar returns from short-stature vegetation are difficult to distinguish from returns from the ground itself, so the “ground” estimated by Lidar is often a bit higher than the true ground surface, and (2) the height estimate from Lidar represents the highest return, but the highest return may slightly miss the actual tallest point on a given tree. This is especially likely to happen with conifers, which are the top-of-canopy trees at Wind River.

Finally, as you explore other types of both remote sensing and ground data, keep in mind that the two datasets we examined here, tree height and canopy height model, are an unusual pair in that both are measuring the same quantity in the same units. Attempting to relate remote sensing and ground data can be much more complicated in other scenarios, such as the relationships between leaf chemistry and reflectance indices.

Interacting with the PhenoCam Server using phenocamapi R Package

The phenocamapi R package is developed to simplify interacting with the PhenoCam network dataset and perform data wrangling steps on PhenoCam sites' data and metadata.

This tutorial will show you the basic commands for accessing PhenoCam data through the PhenoCam API. The phenocampapi R package is developed and maintained by the PhenoCam team. The most recent release is available on GitHub (PhenocamAPI). Additional vignettes can be found on how to merge external time-series (e.g. Flux data) with the PhenoCam time-series.

We begin with several useful skills and tools for extracting PhenoCam data directly from the server:

  • Exploring the PhenoCam metadata
  • Filtering the dataset by site attributes
  • Downloading PhenoCam time-series data
  • Extracting the list of midday images
  • Downloading midday images for a given time range

Exploring PhenoCam metadata

Each PhenoCam site has specific metadata including but not limited to how a site is set up and where it is located, what vegetation type is visible from the camera, and its meteorological regime. Each PhenoCam may have zero to several Regions of Interest (ROIs) per vegetation type. The phenocamapi package is an interface to interact with the PhenoCam server to extract those data and process them in an R environment.

To explore the PhenoCam data, we'll use several packages for this tutorial.

library(data.table) #installs package that creates a data frame for visualizing data in row-column table format

library(phenocamapi)  #installs packages of time series and phenocam data from the Phenology Network. Loads required packages rjson, bitops and RCurl

library(lubridate)  #install time series data package

library(jpeg)

We can obtain an up-to-date data.frame of the metadata of the entire PhenoCam network using the get_phenos() function. The returning value would be a data.table in order to simplify further data exploration.

#Obtain phenocam metadata from the Phenology Network in form of a data.table

phenos <- get_phenos()



#Explore metadata table

head(phenos$site) #preview first six rows of the table. These are the first six phenocam sites in the Phenology Network

#> [1] "aafcottawacfiaf14e" "aafcottawacfiaf14n" "aafcottawacfiaf14w" "acadia"            
#> [5] "admixpasture"       "adrycpasture"



colnames(phenos)  #view all column names. 

#>  [1] "site"                      "lat"                       "lon"                      
#>  [4] "elev"                      "active"                    "utc_offset"               
#>  [7] "date_first"                "date_last"                 "infrared"                 
#> [10] "contact1"                  "contact2"                  "site_description"         
#> [13] "site_type"                 "group"                     "camera_description"       
#> [16] "camera_orientation"        "flux_data"                 "flux_networks"            
#> [19] "flux_sitenames"            "dominant_species"          "primary_veg_type"         
#> [22] "secondary_veg_type"        "site_meteorology"          "MAT_site"                 
#> [25] "MAP_site"                  "MAT_daymet"                "MAP_daymet"               
#> [28] "MAT_worldclim"             "MAP_worldclim"             "koeppen_geiger"           
#> [31] "ecoregion"                 "landcover_igbp"            "dataset_version1"         
#> [34] "site_acknowledgements"     "modified"                  "flux_networks_name"       
#> [37] "flux_networks_url"         "flux_networks_description"

#This is all the metadata we have for the phenocams in the Phenology Network

Now we have a better idea of the types of metadata that are available for the Phenocams.

Remove null values

We may want to explore some of the patterns in the metadata before we jump into specific locations. Let's look at Mean Annual Precipitation (MAP) and Mean Annual Temperature (MAT) across the different field site and classify those by the primary vegetation type ('primary_veg_type') for each site.

| Abbreviation | Description | |----------|:-------------:|------:| | AG | agriculture | | DB | deciduous broadleaf | | DN | deciduous needleleaf | | EB | evergreen broadleaf | | EN | evergreen needleleaf | | GR | grassland | | MX | mixed vegetation (generally EN/DN, DB/EN, or DB/EB) | | SH | shrubs | | TN | tundra (includes sedges, lichens, mosses, etc.) | | WT | wetland | | NV | non-vegetated | | RF | reference panel | | XX | unspecified |

To do this we'd first want to remove the sites where there is not data and then plot the data.

# #Some sites do not have data on Mean Annual Precipitation (MAP) and Mean Annual Temperature (MAT).



# removing the sites with unknown MAT and MAP values

phenos <- phenos[!((MAT_worldclim == -9999)|(MAP_worldclim == -9999))]



# Making a plot showing all sites by their vegetation type (represented as different symbols and colors) plotting across meteorology (MAT and MAP) space. Refer to table to identify vegetation type acronyms.

phenos[primary_veg_type=='DB', plot(MAT_worldclim, MAP_worldclim, pch = 19, col = 'green', xlim = c(-5, 27), ylim = c(0, 4000))]

#> NULL

phenos[primary_veg_type=='DN', points(MAT_worldclim, MAP_worldclim, pch = 1, col = 'darkgreen')]

#> NULL

phenos[primary_veg_type=='EN', points(MAT_worldclim, MAP_worldclim, pch = 17, col = 'brown')]

#> NULL

phenos[primary_veg_type=='EB', points(MAT_worldclim, MAP_worldclim, pch = 25, col = 'orange')]

#> NULL

phenos[primary_veg_type=='AG', points(MAT_worldclim, MAP_worldclim, pch = 12, col = 'yellow')]

#> NULL

phenos[primary_veg_type=='SH', points(MAT_worldclim, MAP_worldclim, pch = 23, col = 'red')]

#> NULL



legend('topleft', legend = c('DB','DN', 'EN','EB','AG', 'SH'), 
       pch = c(19, 1, 17, 25, 12, 23), 
       col =  c('green', 'darkgreen', 'brown',  'orange',  'yellow',  'red' ))

Filtering using attributes

Alternatively, we may want to only include Phenocams with certain attributes in our datasets. For example, we may be interested only in sites with a co-located flux tower. For this, we'd want to filter for those with a flux tower using the flux_sitenames attribute in the metadata.

# Create a data table only including the sites that have flux_data available and where the FLUX site name is specified

phenofluxsites <- phenos[flux_data==TRUE&!is.na(flux_sitenames)&flux_sitenames!='', 
                         .(PhenoCam=site, Flux=flux_sitenames)] # return as table



#Specify to retain variables of Phenocam site and their flux tower name

phenofluxsites <- phenofluxsites[Flux!='']



# view the first few rows of the data table

head(phenofluxsites)

#>               PhenoCam                               Flux
#>                 <char>                             <char>
#> 1:        admixpasture                             NZ-ADw
#> 2: alercecosteroforest                             CL-ACF
#> 3:      alligatorriver                             US-NC4
#> 4:            amtsvenn                                 No
#> 5:    arkansaswhitaker                             US-RGW
#> 6:         arsbrooks10 US-Br1: Brooks Field Site 10- Ames

We could further identify which of those Phenocams with a flux tower and in deciduous broadleaf forests (primary_veg_type=='DB').

#list deciduous broadleaf sites with a flux tower

DB.flux <- phenos[flux_data==TRUE&primary_veg_type=='DB', 
                  site]  # return just the site names as a list



# see the first few rows

head(DB.flux)

#> [1] "alligatorriver" "bartlett"       "bartlettir"     "bbc1"           "bbc2"          
#> [6] "bbc3"

PhenoCam time series

PhenoCam time series are extracted time series data obtained from regions of interest (ROI's) for a given site.

Obtain ROIs

To download the phenological time series from the PhenoCam, we need to know the site name, vegetation type and ROI ID. This information can be obtained from each specific PhenoCam page on the PhenoCam website or by using the get_rois() function.

# Obtaining the list of all the available regions of interest (ROI's) on the PhenoCam server and producing a data table

rois <- get_rois()



# view the data variables in the data table

colnames(rois)

#>  [1] "roi_name"          "site"              "lat"               "lon"              
#>  [5] "roitype"           "active"            "show_link"         "show_data_link"   
#>  [9] "sequence_number"   "description"       "first_date"        "last_date"        
#> [13] "site_years"        "missing_data_pct"  "roi_page"          "roi_stats_file"   
#> [17] "one_day_summary"   "three_day_summary" "data_release"



# view first few regions of of interest (ROI) locations

head(rois$roi_name)

#> [1] "aafcottawacfiaf14n_AG_1000"  "admixpasture_AG_1000"        "adrycpasture_AG_1000"       
#> [4] "alercecosteroforest_EN_1000" "alligatorriver_DB_1000"      "almondifapa_AG_1000"

Download time series

The get_pheno_ts() function can download a time series and return the result as a data.table. Let's work with the Duke Forest Hardwood Stand (dukehw) PhenoCam and specifically the ROI DB_1000 we can run the following code.

# list ROIs for dukehw

rois[site=='dukehw',]

#>          roi_name   site      lat       lon roitype active show_link show_data_link
#>            <char> <char>    <num>     <num>  <char> <lgcl>    <lgcl>         <lgcl>
#> 1: dukehw_DB_1000 dukehw 35.97358 -79.10037      DB   TRUE      TRUE           TRUE
#>    sequence_number                                   description first_date  last_date site_years
#>              <num>                                        <char>     <char>     <char>     <char>
#> 1:            1000 canopy level DB forest at awesome Duke forest 2013-06-01 2024-12-30       10.7
#>    missing_data_pct                                            roi_page
#>              <char>                                              <char>
#> 1:              8.0 https://phenocam.nau.edu/webcam/roi/dukehw/DB_1000/
#>                                                                  roi_stats_file
#>                                                                          <char>
#> 1: https://phenocam.nau.edu/data/archive/dukehw/ROI/dukehw_DB_1000_roistats.csv
#>                                                             one_day_summary
#>                                                                      <char>
#> 1: https://phenocam.nau.edu/data/archive/dukehw/ROI/dukehw_DB_1000_1day.csv
#>                                                           three_day_summary data_release
#>                                                                      <char>       <lgcl>
#> 1: https://phenocam.nau.edu/data/archive/dukehw/ROI/dukehw_DB_1000_3day.csv           NA



# Obtain the decidous broadleaf, ROI ID 1000 data from the dukehw phenocam

dukehw_DB_1000 <- get_pheno_ts(site = 'dukehw', vegType = 'DB', roiID = 1000, type = '3day')



# Produces a list of the dukehw data variables

str(dukehw_DB_1000)

#> Classes 'data.table' and 'data.frame':	1414 obs. of  35 variables:
#>  $ date                : chr  "2013-06-01" "2013-06-04" "2013-06-07" "2013-06-10" ...
#>  $ year                : int  2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
#>  $ doy                 : int  152 155 158 161 164 167 170 173 176 179 ...
#>  $ image_count         : int  57 76 77 77 77 78 21 0 0 0 ...
#>  $ midday_filename     : chr  "dukehw_2013_06_01_120111.jpg" "dukehw_2013_06_04_120119.jpg" "dukehw_2013_06_07_120112.jpg" "dukehw_2013_06_10_120108.jpg" ...
#>  $ midday_r            : num  91.3 76.4 60.6 76.5 88.9 ...
#>  $ midday_g            : num  97.9 85 73.2 82.2 95.7 ...
#>  $ midday_b            : num  47.4 33.6 35.6 37.1 51.4 ...
#>  $ midday_gcc          : num  0.414 0.436 0.432 0.42 0.406 ...
#>  $ midday_rcc          : num  0.386 0.392 0.358 0.391 0.377 ...
#>  $ r_mean              : num  87.6 79.9 72.7 80.9 83.8 ...
#>  $ r_std               : num  5.9 6 9.5 8.23 5.89 ...
#>  $ g_mean              : num  92.1 86.9 84 88 89.7 ...
#>  $ g_std               : num  6.34 5.26 7.71 7.77 6.47 ...
#>  $ b_mean              : num  46.1 38 39.6 43.1 46.7 ...
#>  $ b_std               : num  4.48 3.42 5.29 4.73 4.01 ...
#>  $ gcc_mean            : num  0.408 0.425 0.429 0.415 0.407 ...
#>  $ gcc_std             : num  0.00859 0.0089 0.01318 0.01243 0.01072 ...
#>  $ gcc_50              : num  0.408 0.427 0.431 0.416 0.407 ...
#>  $ gcc_75              : num  0.414 0.431 0.435 0.424 0.415 ...
#>  $ gcc_90              : num  0.417 0.434 0.44 0.428 0.421 ...
#>  $ rcc_mean            : num  0.388 0.39 0.37 0.381 0.38 ...
#>  $ rcc_std             : num  0.01176 0.01032 0.01326 0.00881 0.00995 ...
#>  $ rcc_50              : num  0.387 0.391 0.373 0.383 0.382 ...
#>  $ rcc_75              : num  0.391 0.396 0.378 0.388 0.385 ...
#>  $ rcc_90              : num  0.397 0.399 0.382 0.391 0.389 ...
#>  $ max_solar_elev      : num  76 76.3 76.6 76.8 76.9 ...
#>  $ snow_flag           : logi  NA NA NA NA NA NA ...
#>  $ outlierflag_gcc_mean: logi  NA NA NA NA NA NA ...
#>  $ outlierflag_gcc_50  : logi  NA NA NA NA NA NA ...
#>  $ outlierflag_gcc_75  : logi  NA NA NA NA NA NA ...
#>  $ outlierflag_gcc_90  : logi  NA NA NA NA NA NA ...
#>  $ YEAR                : int  2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
#>  $ DOY                 : int  152 155 158 161 164 167 170 173 176 179 ...
#>  $ YYYYMMDD            : chr  "2013-06-01" "2013-06-04" "2013-06-07" "2013-06-10" ...
#>  - attr(*, ".internal.selfref")=<externalptr>

We now have a variety of data related to this ROI from the Hardwood Stand at Duke Forest.

Green Chromatic Coordinate (GCC) is a measure of "greenness" of an area and is widely used in Phenocam images as an indicator of the green pigment in vegetation. Let's use this measure to look at changes in GCC over time at this site. Looking back at the available data, we have several options for GCC. gcc90 is the 90th quantile of GCC in the pixels across the ROI (for more details, PhenoCam v1 description). We'll use this as it tracks the upper greenness values while not including many outliners.

Before we can plot gcc-90 we do need to fix our dates and convert them from Factors to Date to correctly plot.

# Convert date variable into date format

dukehw_DB_1000[,date:=as.Date(date)]



# plot gcc_90

dukehw_DB_1000[,plot(date, gcc_90, col = 'green', type = 'b')]

#> NULL

mtext('Duke Forest, Hardwood', font = 2)

Download midday images

While PhenoCam sites may have many images in a given day, many simple analyses can use just the midday image when the sun is most directly overhead the canopy. Therefore, extracting a list of midday images (only one image a day) can be useful.

# obtaining midday_images for dukehw

duke_middays <- get_midday_list('dukehw')



# see the first few rows

head(duke_middays)

#> [1] "http://phenocam.nau.edu/data/archive/dukehw/2013/05/dukehw_2013_05_31_150331.jpg"
#> [2] "http://phenocam.nau.edu/data/archive/dukehw/2013/06/dukehw_2013_06_01_120111.jpg"
#> [3] "http://phenocam.nau.edu/data/archive/dukehw/2013/06/dukehw_2013_06_02_120109.jpg"
#> [4] "http://phenocam.nau.edu/data/archive/dukehw/2013/06/dukehw_2013_06_03_120110.jpg"
#> [5] "http://phenocam.nau.edu/data/archive/dukehw/2013/06/dukehw_2013_06_04_120119.jpg"
#> [6] "http://phenocam.nau.edu/data/archive/dukehw/2013/06/dukehw_2013_06_05_120110.jpg"

Now we have a list of all the midday images from this Phenocam. Let's download them and plot

# download a file

destfile <- tempfile(fileext = '.jpg')



# download only the first available file

# modify the `[1]` to download other images

download.file(duke_middays[1], destfile = destfile, mode = 'wb')



# plot the image

img <- try(readJPEG(destfile))

if(class(img)!='try-error'){
  par(mar= c(0,0,0,0))
  plot(0:1,0:1, type='n', axes= FALSE, xlab= '', ylab = '')
  rasterImage(img, 0, 0, 1, 1)
}

Download midday images for a given time range

Now we can access all the midday images and download them one at a time. However, we frequently want all the images within a specific time range of interest. We'll learn how to do that next.

# open a temporary directory

tmp_dir <- tempdir()



# download a subset. Example dukehw 2017

download_midday_images(site = 'dukehw', # which site
                       y = 2017, # which year(s)
                       months = 1:12, # which month(s)
                       days = 15, # which days on month(s)
                       download_dir = tmp_dir) # where on your computer



# list of downloaded files

duke_middays_path <- dir(tmp_dir, pattern = 'dukehw*', full.names = TRUE)



head(duke_middays_path)

We can demonstrate the seasonality of Duke forest observed from the camera. (Note this code may take a while to run through the loop).

n <- length(duke_middays_path)

par(mar= c(0,0,0,0), mfrow=c(4,3), oma=c(0,0,3,0))



for(i in 1:n){
  img <- readJPEG(duke_middays_path[i])
  plot(0:1,0:1, type='n', axes= FALSE, xlab= '', ylab = '')
  rasterImage(img, 0, 0, 1, 1)
  mtext(month.name[i], line = -2)
}

mtext('Seasonal variation of forest at Duke Hardwood Forest', font = 2, outer = TRUE)

The goal of this section was to show how to download a limited number of midday images from the PhenoCam server. However, more extensive datasets should be downloaded from the PhenoCam .


The most recent release of the phenocamapi R package is available on GitHub: https://github.com/PhenoCamNetwork/phenocamapi.

Extracting Timeseries from Images using the xROI R Package

In this tutorial, we'll learn how to use an interactive open-source toolkit, the xROI that facilitates the process of time series extraction and improves the quality of the final data. The xROI package provides a responsive environment for scientists to interactively:

a) delineate regions of interest (ROIs), b) handle field of view (FOV) shifts, and c) extract and export time series data characterizing color-based metrics.

Using the xROI R package, the user can detect FOV shifts with minimal difficulty. The software gives user the opportunity to re-adjust mask files or redraw new ones every time an FOV shift occurs.

xROI Design

The R language and Shiny package were used as the main development tool for xROI, while Markdown, HTML, CSS and JavaScript languages were used to improve the interactivity. While Shiny apps are primarily used for web-based applications to be used online, the package authors used Shiny for its graphical user interface capabilities. In other words, both the User Interface (UI) and server modules are run locally from the same machine and hence no internet connection is required (after installation). The xROI's UI element presents a side-panel for data entry and three main tab-pages, each responsible for a specific task. The server-side element consists of R and bash scripts. Image processing and geospatial features were performed using the Geospatial Data Abstraction Library (GDAL) and the rgdal and raster R packages.

Install xROI

The latest release of xROI can be directly downloaded and installed from the development GitHub repository.

# install devtools first
utils::install.packages('devtools', repos = "http://cran.us.r-project.org" )

# use devtools to install from GitHub
devtools::install_github("bnasr/xROI")

xROI depends on many R packages including: raster, rgdal, sp, jpeg, tiff, shiny, shinyjs, shinyBS, shinyAce, shinyTime, shinyFiles, shinydashboard, shinythemes, colourpicker, rjson, stringr, data.table, lubridate, plotly, moments, and RCurl. All the required libraries and packages will be automatically installed with installation of xROI. The package offers a fully interactive high-level interface as well as a set of low-level functions for ROI processing.

Launch xROI

A comprehensive user manual for low-level image processing using xROI is available from GitHub xROI. While the user manual includes a set of examples for each function; here we will learn to use the graphical interactive mode.

Calling the Launch() function, as we'll do below, opens up the interactive mode in your operating system’s default web browser. The landing page offers an example dataset to explore different modules or upload a new dataset of images.

You can launch the interactive mode can be launched from an interactive R environment.

# load xROI
library(xROI)

# launch xROI 
Launch()

Or from the command line (e.g. bash in Linux, Terminal in macOS and Command Prompt in Windows machines) where an R engine is already installed.

Rscript -e “xROI::Launch(Interactive = TRUE)”

End xROI

When you are done with the xROI interface you can close the tab in your browser and end the session in R by using one of the following options

In RStudio: Press the key on your keyboard. In R Terminal: Press <Ctrl + C> on your keyboard.

Use xROI

To get some hands-on experience with xROI, we can analyze images from the dukehw of the PhenoCam network.

You can download the data set from this link (direct download).

Follow the steps below:

First,save and extract (unzip) the file on your computer.

Second, open the data set in xROI by setting the file path to your data

# launch data in ROI
# first edit the path below to the dowloaded directory you just extracted
xROI::Launch('/path/to/extracted/directory')

# alternatively, you can run without specifying a path and use the interface to browse 

Now, draw an ROI and the metadata.

Then, save the metadata and explore its content.

Now we can explore if there is any FOV shift in the dataset using the CLI processer tab.

Finally, we can go to the Time series extraction tab. Extract the time-series. Save the output and explore the dataset in R.

Challenge: Use xROI

Let's use xROI on a little more challenging site with field of view shifts.

Download and extract the data set from this link (direct download, 218 MB) and follow the above steps to extract the time-series.


The xROI R package is developed and maintained by Bijan Seyednarollah. The most recent release is available from https://github.com/bnasr/xROI.

Detecting Foggy Images using the hazer Package

In this tutorial, you will learn how to

  1. perform basic image processing and
  2. estimate image haziness as an indication of fog, cloud or other natural or artificial factors using the hazerR package.

Read & Plot Image

We will use several packages in this tutorial. All are available from CRAN.

# load packages
library(hazer)
library(jpeg)
library(data.table)

Before we start the image processing steps, let's read in and plot an image. This image is an example image that comes with the hazer package.

# read the path to the example image
jpeg_file <- system.file(package = 'hazer', 'pointreyes.jpg')

# read the image as an array
rgb_array <- jpeg::readJPEG(jpeg_file)

# plot the RGB array on the active device panel


# first set the margin in this order:(bottom, left, top, right)
par(mar=c(0,0,3,0))  
plotRGBArray(rgb_array, bty = 'n', main = 'Point Reyes National Seashore')

When we work with images, all data we work with is generally on the scale of each individual pixel in the image. Therefore, for large images we will be working with large matrices that hold the value for each pixel. Keep this in mind before opening some of the matrices we'll be creating this tutorial as it can take a while for them to load.

Histogram of RGB channels

A histogram of the colors can be useful to understanding what our image is made up of. Using the density() function from the base stats package, we can extract density distribution of each color channel.

# color channels can be extracted from the matrix
red_vector <- rgb_array[,,1]
green_vector <- rgb_array[,,2]
blue_vector <- rgb_array[,,3]

# plotting 
par(mar=c(5,4,4,2)) 
plot(density(red_vector), col = 'red', lwd = 2, 
		 main = 'Density function of the RGB channels', ylim = c(0,5))
lines(density(green_vector), col = 'green', lwd = 2)
lines(density(blue_vector), col = 'blue', lwd = 2)

In hazer we can also extract three basic elements of an RGB image :

  1. Brightness
  2. Darkness
  3. Contrast

Brightness

The brightness matrix comes from the maximum value of the R, G, or B channel. We can extract and show the brightness matrix using the getBrightness() function.

# extracting the brightness matrix
brightness_mat <- getBrightness(rgb_array)

# unlike the RGB array which has 3 dimensions, the brightness matrix has only two 
# dimensions and can be shown as a grayscale image,
# we can do this using the same plotRGBArray function
par(mar=c(0,0,3,0))
plotRGBArray(brightness_mat, bty = 'n', main = 'Brightness matrix')

Here the grayscale is used to show the value of each pixel's maximum brightness of the R, G or B color channel.

To extract a single brightness value for the image, depending on our needs we can perform some statistics or we can just use the mean of this matrix.

# the main quantiles
quantile(brightness_mat)

#>         0%        25%        50%        75%       100% 
#> 0.09019608 0.43529412 0.62745098 0.80000000 0.91764706


# create histogram
par(mar=c(5,4,4,2))
hist(brightness_mat)

Why are we getting so many images up in the high range of the brightness? Where does this correlate to on the RGB image?

Darkness

Darkness is determined by the minimum of the R, G or B color channel. Similarly, we can extract and show the darkness matrix using the getDarkness() function.

# extracting the darkness matrix
darkness_mat <- getDarkness(rgb_array)

# the darkness matrix has also two dimensions and can be shown as a grayscale image
par(mar=c(0,0,3,0))
plotRGBArray(darkness_mat, bty = 'n', main = 'Darkness matrix')

# main quantiles
quantile(darkness_mat)

#>         0%        25%        50%        75%       100% 
#> 0.03529412 0.23137255 0.36470588 0.47843137 0.83529412


# histogram
par(mar=c(5,4,4,2))
hist(darkness_mat)

Contrast

The contrast of an image is the difference between the darkness and brightness of the image. The contrast matrix is calculated by difference between the darkness and brightness matrices.

The contrast of the image can quickly be extracted using the getContrast() function.

# extracting the contrast matrix
contrast_mat <- getContrast(rgb_array)

# the contrast matrix has also 2D and can be shown as a grayscale image
par(mar=c(0,0,3,0))
plotRGBArray(contrast_mat, bty = 'n', main = 'Contrast matrix')

# main quantiles
quantile(contrast_mat)

#>        0%       25%       50%       75%      100% 
#> 0.0000000 0.1450980 0.2470588 0.3333333 0.4509804


# histogram
par(mar=c(5,4,4,2))
hist(contrast_mat)

Image fogginess & haziness

Haziness of an image can be estimated using the getHazeFactor() function. This function is based on the method described in Mao et al. (2014). The technique was originally developed to for "detecting foggy images and estimating the haze degree factor" for a wide range of outdoor conditions.

The function returns a vector of two numeric values:

  1. haze as the haze degree and
  2. A0 as the global atmospheric light, as it is explained in the original paper.

The PhenoCam standards classify any image with the haze degree greater than 0.4 as a significantly foggy image.

# extracting the haze matrix
haze_degree <- getHazeFactor(rgb_array)

print(haze_degree)

#> $haze
#> [1] 0.2251633
#> 
#> $A0
#> [1] 0.7105258

Here we have the haze values for our image. Note that the values might be slightly different due to rounding errors on different platforms.

Process sets of images

We can use for loops or the lapply functions to extract the haze values for a stack of images.

You can download the related datasets from here (direct download).

Download and extract the zip file to be used as input data for the following step.

# to download via R
dir.create('data')

#> Warning in dir.create("data"): 'data' already exists

destfile = 'data/pointreyes.zip'
download.file(destfile = destfile, mode = 'wb', url = 'http://bit.ly/2F8w2Ia')
unzip(destfile, exdir = 'data')  


# set up the input image directory
#pointreyes_dir <- '/path/to/image/directory/'
pointreyes_dir <- 'data/pointreyes/'

# get a list of all .jpg files in the directory
pointreyes_images <- dir(path = pointreyes_dir, 
                         pattern = '*.jpg',
                         ignore.case = TRUE, 
                         full.names = TRUE)

Now we can use a for loop to process all of the images to get the haze and A0 values.

(Note, this loop may take a while to process.)

# number of images
n <- length(pointreyes_images)

# create an empty matrix to fill with haze and A0 values
haze_mat <- data.table()

# the process takes a bit, a progress bar lets us know it is working.
pb <- txtProgressBar(0, n, style = 3)

#> 

|
| | 0%

for(i in 1:n) {
  image_path <- pointreyes_images[i]
  img <- jpeg::readJPEG(image_path)
  haze <- getHazeFactor(img)
  
  haze_mat <- rbind(haze_mat, 
                    data.table(file = image_path, 
                               haze = haze[1], 
                               A0 = haze[2]))
  
  setTxtProgressBar(pb, i)
}

#> 

|
|= | 1% |
|== | 3% |
|=== | 4% |
|===== | 6% |
|====== | 7% |
|======= | 8% |
|======== | 10% |
|========= | 11% |
|========== | 13% |
|============ | 14% |
|============= | 15% |
|============== | 17% |
|=============== | 18% |
|================ | 20% |
|================= | 21% |
|================== | 23% |
|==================== | 24% |
|===================== | 25% |
|====================== | 27% |
|======================= | 28% |
|======================== | 30% |
|========================= | 31% |
|=========================== | 32% |
|============================ | 34% |
|============================= | 35% |
|============================== | 37% |
|=============================== | 38% |
|================================ | 39% |
|================================= | 41% |
|=================================== | 42% |
|==================================== | 44% |
|===================================== | 45% |
|====================================== | 46% |
|======================================= | 48% |
|======================================== | 49% |
|========================================== | 51% |
|=========================================== | 52% |
|============================================ | 54% |
|============================================= | 55% |
|============================================== | 56% |
|=============================================== | 58% |
|================================================= | 59% |
|================================================== | 61% |
|=================================================== | 62% |
|==================================================== | 63% |
|===================================================== | 65% |
|====================================================== | 66% |
|======================================================= | 68% |
|========================================================= | 69% |
|========================================================== | 70% |
|=========================================================== | 72% |
|============================================================ | 73% |
|============================================================= | 75% |
|============================================================== | 76% |
|================================================================ | 77% |
|================================================================= | 79% |
|================================================================== | 80% |
|=================================================================== | 82% |
|==================================================================== | 83% |
|===================================================================== | 85% |
|====================================================================== | 86% |
|======================================================================== | 87% |
|========================================================================= | 89% |
|========================================================================== | 90% |
|=========================================================================== | 92% |
|============================================================================ | 93% |
|============================================================================= | 94% |
|=============================================================================== | 96% |
|================================================================================ | 97% |
|================================================================================= | 99% |
|==================================================================================| 100%

Now we have a matrix with haze and A0 values for all our images. Let's compare top five images with low and high haze values.

haze_mat[,haze:=unlist(haze)]

top10_high_haze <-  haze_mat[order(haze), file][1:5]
top10_low_haze <-  haze_mat[order(-haze), file][1:5]

par(mar= c(0,0,0,0), mfrow=c(5,2), oma=c(0,0,3,0))

for(i in 1:5){
  img <- readJPEG(top10_low_haze[i])
  plot(0:1,0:1, type='n', axes= FALSE, xlab= '', ylab = '')
  rasterImage(img, 0, 0, 1, 1)
  
  img <- readJPEG(top10_high_haze[i])
  plot(0:1,0:1, type='n', axes= FALSE, xlab= '', ylab = '')
  rasterImage(img, 0, 0, 1, 1)
}

mtext('Separating out foggy images of Point Reyes, CA', font = 2, outer = TRUE)

Let's classify those into hazy and non-hazy as per the PhenoCam standard of 0.4.

# classify image as hazy: T/F
haze_mat[haze>0.4,foggy:=TRUE]
haze_mat[haze<=0.4,foggy:=FALSE]

head(haze_mat)

#>                                                 file      haze        A0 foggy
#> 1: data/pointreyes//pointreyes_2017_01_01_120056.jpg 0.2249810 0.6970257 FALSE
#> 2: data/pointreyes//pointreyes_2017_01_06_120210.jpg 0.2339372 0.6826148 FALSE
#> 3: data/pointreyes//pointreyes_2017_01_16_120105.jpg 0.2312940 0.7009978 FALSE
#> 4: data/pointreyes//pointreyes_2017_01_21_120105.jpg 0.4536108 0.6209055  TRUE
#> 5: data/pointreyes//pointreyes_2017_01_26_120106.jpg 0.2297961 0.6813884 FALSE
#> 6: data/pointreyes//pointreyes_2017_01_31_120125.jpg 0.4206842 0.6315728  TRUE

Now we can save all the foggy images to a new folder that will retain the foggy images but keep them separate from the non-foggy ones that we want to analyze.

# identify directory to move the foggy images to
foggy_dir <- paste0(pointreyes_dir, 'foggy')
clear_dir <- paste0(pointreyes_dir, 'clear')

# if a new directory, create new directory at this file path
dir.create(foggy_dir,  showWarnings = FALSE)
dir.create(clear_dir,  showWarnings = FALSE)

# copy the files to the new directories
file.copy(haze_mat[foggy==TRUE,file], to = foggy_dir)

#>  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [15] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [29] FALSE FALSE


file.copy(haze_mat[foggy==FALSE,file], to = clear_dir)

#>  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [15] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [29] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Now that we have our images separated, we can get the full list of haze values only for those images that are not classified as "foggy".

# this is an alternative approach instead of a for loop

# loading all the images as a list of arrays
pointreyes_clear_images <- dir(path = clear_dir, 
                         pattern = '*.jpg',
                         ignore.case = TRUE, 
                         full.names = TRUE)

img_list <- lapply(pointreyes_clear_images, FUN = jpeg::readJPEG)

# getting the haze value for the list
# patience - this takes a bit of time
haze_list <- t(sapply(img_list, FUN = getHazeFactor))

# view first few entries
head(haze_list)

#>      haze      A0       
#> [1,] 0.224981  0.6970257
#> [2,] 0.2339372 0.6826148
#> [3,] 0.231294  0.7009978
#> [4,] 0.2297961 0.6813884
#> [5,] 0.2152078 0.6949932
#> [6,] 0.345584  0.6789334

We can then use these values for further analyses and data correction.


The hazer R package is developed and maintained by Bijan Seyednarollah. The most recent release is available from https://github.com/bnasr/hazer.

Download and Explore NEON Data

This tutorial covers downloading NEON data, using the Data Portal and either the neonUtilities R package or the neonutilities Python package, as well as basic instruction in beginning to explore and work with the downloaded data, including guidance in navigating data documentation. We will explore data of 3 different types, and make a simple figure from each.

NEON data

There are 3 basic categories of NEON data:

  1. Remote sensing (AOP) - Data collected by the airborne observation platform, e.g. LIDAR, surface reflectance
  2. Observational (OS) - Data collected by a human in the field, or in an analytical laboratory, e.g. beetle identification, foliar isotopes
  3. Instrumentation (IS) - Data collected by an automated, streaming sensor, e.g.  net radiation, soil carbon dioxide. This category also includes the surface-atmosphere exchange (SAE) data, which are processed and structured in a unique way, distinct from other instrumentation data (see the introductory eddy flux data tutorial for details).

This lesson covers all three types of data. The download procedures are similar for all types, but data navigation differs significantly by type.

Objectives

After completing this activity, you will be able to:

  • Download NEON data using the neonUtilities package.
  • Understand downloaded data sets and load them into R or Python for analyses.

Things You’ll Need To Complete This Tutorial

You can follow either the R or Python code throughout this tutorial. * For R users, we recommend using R version 4+ and RStudio. * For Python users, we recommend using Python 3.9+.

Set up: Install Packages

Packages only need to be installed once, you can skip this step after the first time:

R

  • neonUtilities: Basic functions for accessing NEON data
  • neonOS: Functions for common data wrangling needs for NEON observational data.
  • terra: Spatial data package; needed for working with remote sensing data.
install.packages("neonUtilities")
install.packages("neonOS")
install.packages("terra")

Python

  • neonutilities: Basic functions for accessing NEON data
  • rasterio: Spatial data package; needed for working with remote sensing data.
pip install neonutilities
pip install rasterio

Additional Resources

  • GitHub repository for neonUtilities R package
  • GitHub repository for neonutilities Python package
  • neonUtilities cheat sheet. A quick reference guide for users. Focuses on the R package, but applicable to Python as well.

Set up: Load packages

R

library(neonUtilities)
library(neonOS)
library(terra)

Python


import neonutilities as nu
import os
import rasterio
import pandas as pd
import matplotlib.pyplot as plt

Getting started: Download data from the Portal

Go to the NEON Data Portal and download some data! To follow the tutorial exactly, download Photosynthetically active radiation (PAR) (DP1.00024.001) data from September-November 2019 at Wind River Experimental Forest (WREF). The downloaded file should be a zip file named NEON_par.zip.

If you prefer to explore a different data product, you can still follow this tutorial. But it will be easier to understand the steps in the tutorial, particularly the data navigation, if you choose a sensor data product for this section.

Once you’ve downloaded a zip file of data from the portal, switch over to R or Python to proceed with coding.

Stack the downloaded data files: stackByTable()

The stackByTable() (or stack_by_table()) function will unzip and join the files in the downloaded zip file.

R

# Modify the file path to match the path to your zip file
stackByTable("~/Downloads/NEON_par.zip")

Python

# Modify the file path to match the path to your zip file
nu.stack_by_table(os.path.expanduser("~/Downloads/NEON_par.zip"))

In the directory where the zipped file was saved, you should now have an unzipped folder of the same name. When you open this you will see a new folder called stackedFiles, which should contain at least seven files: PARPAR_30min.csv, PARPAR_1min.csv, sensor_positions.csv, variables_00024.csv, readme_00024.txt, issueLog_00024.csv, and citation_00024_RELEASE-202X.txt.

Navigate data downloads: IS

Let’s start with a brief description of each file. This set of files is typical of a NEON IS data product.

  • PARPAR_30min.csv: PAR data at 30-minute averaging intervals
  • PARPAR_1min.csv: PAR data at 1-minute averaging intervals
  • sensor_positions.csv: The physical location of each sensor collecting PAR measurements. There is a PAR sensor at each level of the WREF tower, and this table lets you connect the tower level index to the height of the sensor in meters.
  • variables_00024.csv: Definitions and units for each data field in the PARPAR_#min tables.
  • readme_00024.txt: Basic information about the PAR data product.
  • issueLog_00024.csv: A record of known issues associated with PAR data.
  • citation_00024_RELEASE-202X.txt: The citation to use when you publish a paper using these data, in BibTeX format.

We’ll explore the 30-minute data. To read the file, use the function readTableNEON() or read_table_neon(), which uses the variables file to assign data types to each column of data:

R

par30 <- readTableNEON(
  dataFile="~/Downloads/NEON_par_R/stackedFiles/PARPAR_30min.csv", 
  varFile="~/Downloads/NEON_par_R/stackedFiles/variables_00024.csv")
head(par30)
par30 <- readTableNEON(
  dataFile="~/Downloads/NEON_par/stackedFiles/PARPAR_30min.csv", 
  varFile="~/Downloads/NEON_par/stackedFiles/variables_00024.csv")
head(par30)

Python


par30 = nu.read_table_neon(
  data_file=os.path.expanduser(
    "~/Downloads/NEON_par/stackedFiles/PARPAR_30min.csv"), 
  var_file=os.path.expanduser(
    "~/Downloads/NEON_par/stackedFiles/variables_00024.csv"))
# Open the par30 table in the table viewer of your choice

The first four columns are added by stackByTable() when it merges files across sites, months, and tower heights. The column publicationDate is the date-time stamp indicating when the data were published, and the release column indicates which NEON data release the data belong to. For more information about NEON data releases, see the Data Product Revisions and Releases page.

Information about each data column can be found in the variables file, where you can see definitions and units for each column of data.

Plot PAR data

Now that we know what we’re looking at, let’s plot PAR from the top tower level. We’ll use the mean PAR from each averaging interval, and we can see from the sensor positions file that the vertical index 080 corresponds to the highest tower level. To explore the sensor positions data in more depth, see the spatial data tutorial.

R

plot(PARMean~endDateTime, 
     data=par30[which(par30$verticalPosition=="080"),],
     type="l")

Python

par30top = par30[par30.verticalPosition=="080"]
fig, ax = plt.subplots()
ax.plot(par30top.endDateTime, par30top.PARMean)
plt.show()

Looks good! The sun comes up and goes down every day, and some days are cloudy.

Plot more PAR data

To see another layer of data, add PAR from a lower tower level to the plot.

R

plot(PARMean~endDateTime, 
     data=par30[which(par30$verticalPosition=="080"),],
     type="l")

lines(PARMean~endDateTime, data=par30[which(par30$verticalPosition=="020"),], col="orange")

Python

par30low = par30[par30.verticalPosition=="020"]
fig, ax = plt.subplots()
ax.plot(par30top.endDateTime, par30top.PARMean)
ax.plot(par30low.endDateTime, par30low.PARMean)
plt.show()

We can see there is a lot of light attenuation through the canopy.

Download files and load directly to R: loadByProduct()

At the start of this tutorial, we downloaded data from the NEON data portal. NEON also provides an API, and the neonUtilities packages provide methods for downloading programmatically.

The steps we carried out above - downloading from the portal, stacking the downloaded files, and reading in to R or Python - can all be carried out in one step by the neonUtilities function loadByProduct().

To get the same PAR data we worked with above, we would run this line of code using loadByProduct():

R

parlist <- loadByProduct(dpID="DP1.00024.001", 
                         site="WREF", 
                         startdate="2019-09",
                         enddate="2019-11")

Python

parlist = nu.load_by_product(dpid="DP1.00024.001", 
                site="WREF", 
                startdate="2019-09",
                enddate="2019-11")

Explore loaded data

The object returned by loadByProduct() in R is a named list, and the object returned by load_by_product() in Python is a dictionary. The objects contained in the list or dictionary are the same set of tables we ended with after stacking the data from the portal above. You can see this by checking the names of the tables in parlist:

R

names(parlist)
## [1] "citation_00024_RELEASE-2024" "issueLog_00024"             
## [3] "PARPAR_1min"                 "PARPAR_30min"               
## [5] "readme_00024"                "sensor_positions_00024"     
## [7] "variables_00024"

Python

parlist.keys()
## dict_keys(['PARPAR_1min', 'PARPAR_30min', 'citation_00024_RELEASE-2024', 'issueLog_00024', 'readme_00024', 'sensor_positions_00024', 'variables_00024'])

Now let’s walk through the details of the inputs and options in loadByProduct().

This function downloads data from the NEON API, merges the site-by-month files, and loads the resulting data tables into the programming environment, assigning each data type to the appropriate class. This is a popular choice for NEON data users because it ensures you’re always working with the latest data, and it ends with ready-to-use tables. However, if you use it in a workflow you run repeatedly, keep in mind it will re-download the data every time. See below for suggestions on saving the data locally to save time and compute resources.

loadByProduct() works on most observational (OS) and sensor (IS) data, but not on surface-atmosphere exchange (SAE) data and remote sensing (AOP) data. For functions that download AOP data, see the final section in this tutorial. For functions that work with SAE data, see the NEON eddy flux data tutorial.

The inputs to loadByProduct() control which data to download and how to manage the processing. The list below shows the R syntax; in Python, the inputs are the same but all lowercase (e.g. `dpid` instead of `dpID`) and `.` is replaced by `_`.

  • dpID: the data product ID, e.g. DP1.00002.001
  • site: defaults to “all”, meaning all sites with available data; can be a vector of 4-letter NEON site codes, e.g.  c("HARV","CPER","ABBY") (or ["HARV","CPER","ABBY"] in Python)
  • startdate and enddate: defaults to NA, meaning all dates with available data; or a date in the form YYYY-MM, e.g.  2017-06. Since NEON data are provided in month packages, finer scale querying is not available. Both start and end date are inclusive.
  • package: either basic or expanded data package. Expanded data packages generally include additional information about data quality, such as chemical standards and quality flags. Not every data product has an expanded package; if the expanded package is requested but there isn’t one, the basic package will be downloaded.
  • timeIndex: defaults to “all”, to download all data; or the number of minutes in the averaging interval. Only applicable to IS data.
  • release: Specify a NEON data release to download. Defaults to the most recent release plus provisional data. See the release tutorial for more information.
  • include.provisional: T or F: should Provisional data be included in the download? Defaults to F to return only Released data, which are citable by a DOI and do not change over time. Provisional data are subject to change.
  • check.size: T or F: should the function pause before downloading data and warn you about the size of your download? Defaults to T; if you are using this function within a script or batch process you will want to set it to F.
  • token: Optional NEON API token for faster downloads. See this tutorial for instructions on using a token.
  • progress: Set to F to turn off progress bars.
  • cloud.mode: Can be set to T if you are working in a cloud environment; enables more efficient data transfer from NEON’s cloud storage.

The dpID is the data product identifier of the data you want to download. The DPID can be found on the Explore Data Products page. It will be in the form DP#.#####.###

Download observational data

To explore observational data, we’ll download aquatic plant chemistry data (DP1.20063.001) from three lake sites: Prairie Lake (PRLA), Suggs Lake (SUGG), and Toolik Lake (TOOK).

R

apchem <- loadByProduct(dpID="DP1.20063.001", 
                  site=c("PRLA","SUGG","TOOK"), 
                  package="expanded",
                  release="RELEASE-2024",
                  check.size=F)

Python

apchem = nu.load_by_product(dpid="DP1.20063.001", 
                  site=["PRLA", "SUGG", "TOOK"], 
                  package="expanded",
                  release="RELEASE-2024",
                  check_size=False)

Navigate data downloads: OS

As we saw above, the object returned by loadByProduct() is a named list of data frames. Let’s check out what’s the same and what’s different from the IS data tables.

R

names(apchem)
##  [1] "apl_biomass"                       "apl_clipHarvest"                  
##  [3] "apl_plantExternalLabDataPerSample" "apl_plantExternalLabQA"           
##  [5] "asi_externalLabPOMSummaryData"     "categoricalCodes_20063"           
##  [7] "citation_20063_RELEASE-2024"       "issueLog_20063"                   
##  [9] "readme_20063"                      "validation_20063"                 
## [11] "variables_20063"

Python

apchem.keys()
## dict_keys(['apl_biomass', 'apl_clipHarvest', 'apl_plantExternalLabDataPerSample', 'apl_plantExternalLabQA', 'asi_externalLabPOMSummaryData', 'categoricalCodes_20063', 'citation_20063_RELEASE-2024', 'issueLog_20063', 'readme_20063', 'validation_20063', 'variables_20063'])

Explore tables

As with the sensor data, we have some data tables and some metadata tables. Most of the metadata files are the same as the sensor data: readme, variables, issueLog, and citation. These files contain the same type of metadata here that they did in the IS data product. Let’s look at the other files:

  • apl_clipHarvest: Data from the clip harvest collection of aquatic plants
  • apl_biomass: Biomass data from the collected plants
  • apl_plantExternalLabDataPerSample: Chemistry data from the collected plants
  • apl_plantExternalLabQA: Quality assurance data from the chemistry analyses
  • asi_externalLabPOMSummaryData: Quality metrics from the chemistry lab
  • validation_20063: For observational data, a major method for ensuring data quality is to control data entry. This file contains information about the data ingest rules applied to each input data field.
  • categoricalCodes_20063: Definitions of each value for categorical data, such as growth form and sample condition

You can work with these tables from the named list object, but many people find it easier to extract each table from the list and work with it as an independent object. To do this, use the list2env() function in R or globals().update() in Python:

R

list2env(apchem, .GlobalEnv)
## <environment: R_GlobalEnv>

Python


globals().update(apchem)

Save data locally

Keep in mind that using loadByProduct() will re-download the data every time you run your code. In some cases this may be desirable, but it can be a waste of time and compute resources. To come back to these data without re-downloading, you’ll want to save the tables locally. The most efficient option is to save the named list in total - this will also preserve the data types.

R

saveRDS(apchem, 
        "~/Downloads/aqu_plant_chem.rds")

Python


# There are a variety of ways to do this in Python; NEON
# doesn't currently have a specific recommendation. If 
# you don't have a data-saving workflow you already use, 
# we suggest you check out the pickle module.

Then you can re-load the object to a programming environment any time.

Other options for saving data locally:

  1. Similar to the workflow we started this tutorial with, but using neonUtilities to download instead of the Portal: Use zipsByProduct() and stackByTable() instead of loadByProduct(). With this option, use the function readTableNEON() to read the files, to get the same column type assignment that loadByProduct() carries out. Details can be found in our neonUtilities tutorial.
  2. Try out the community-developed neonstore package, which is designed for maintaining a local store of the NEON data you use. The neonUtilities function stackFromStore() works with files downloaded by neonstore. See the neonstore tutorial for more information.

Now let’s explore the aquatic plant data. OS data products are simple in that the data are generally tabular, and data volumes are lower than the other NEON data types, but they are complex in that almost all consist of multiple tables containing information collected at different times in different ways. For example, samples collected in the field may be shipped to a laboratory for analysis. Data associated with the field collection will appear in one data table, and the analytical results will appear in another. Complexity in working with OS data usually involves bringing data together from multiple measurements or scales of analysis.

As with the IS data, the variables file can tell you more about the data tables.

OS data products each come with a Data Product User Guide, which can be downloaded with the data, or accessed from the document library on the Data Portal, or the Product Details page for the data product. The User Guide is designed to give a basic introduction to the data product, including a brief summary of the protocol and descriptions of data format and structure.

Explore isotope data

To get started with the aquatic plant chemistry data, let’s take a look at carbon isotope ratios in plants across the three sites we downloaded. The chemical analytes are reported in the apl_plantExternalLabDataPerSample table, and the table is in long format, with one record per sample per analyte, so we’ll subset to only the carbon isotope analyte:

R

boxplot(analyteConcentration~siteID, 
        data=apl_plantExternalLabDataPerSample, 
        subset=analyte=="d13C",
        xlab="Site", ylab="d13C")

Python

apl13C = apl_plantExternalLabDataPerSample[
         apl_plantExternalLabDataPerSample.analyte=="d13C"]
grouped = apl13C.groupby("siteID")["analyteConcentration"]
fig, ax = plt.subplots()
ax.boxplot(x=[group.values for name, group in grouped],
           tick_labels=grouped.groups.keys())
plt.show()

We see plants at Suggs and Toolik are quite low in 13C, with more spread at Toolik than Suggs, and plants at Prairie Lake are relatively enriched. Clearly the next question is what species these data represent. But taxonomic data aren’t present in the apl_plantExternalLabDataPerSample table, they’re in the apl_biomass table. We’ll need to join the two tables to get chemistry by taxon.

Every NEON data product has a Quick Start Guide (QSG), and for OS products it includes a section describing how to join the tables in the data product. Since it’s a pdf file, loadByProduct() doesn’t bring it in, but you can view the Aquatic plant chemistry QSG on the Product Details page. In R, the neonOS package uses the information from the QSGs to provide an automated table-joining function, joinTableNEON().

Explore isotope data by species

R

apct <- joinTableNEON(apl_biomass, 
            apl_plantExternalLabDataPerSample)

Using the merged data, now we can plot carbon isotope ratio for each taxon.

boxplot(analyteConcentration~scientificName, 
        data=apct, subset=analyte=="d13C", 
        xlab=NA, ylab="d13C", 
        las=2, cex.axis=0.7)

Python

There is not yet an equivalent to the neonOS package in Python, so we will code the table join manually, based on the info in the Quick Start Guide:


apct = pd.merge(apl_biomass, 
            apl_plantExternalLabDataPerSample,
            left_on=["siteID", "chemSubsampleID"],
            right_on=["siteID", "sampleID"],
            how="outer")

Using the merged data, now we can plot carbon isotope ratio for each taxon.

apl13Cspp = apct[apct.analyte=="d13C"]
grouped = apl13Cspp.groupby("scientificName")["analyteConcentration"]
fig, ax = plt.subplots()
ax.boxplot(x=[group.values for name, group in grouped],
           tick_labels=grouped.groups.keys())
ax.tick_params(axis='x', labelrotation=90)
plt.show()

And now we can see most of the sampled plants have carbon isotope ratios around -30, with just a few species accounting for most of the more enriched samples.

Download remote sensing data: byFileAOP() and byTileAOP()

Remote sensing data files are very large, so downloading them can take a long time. byFileAOP() and byTileAOP() enable easier programmatic downloads, but be aware it can take a very long time to download large amounts of data.

Input options for the AOP functions are:

  • dpID: the data product ID, e.g. DP1.00002.001
  • site: the 4-letter code of a single site, e.g. HARV
  • year: the 4-digit year to download
  • savepath: the file path you want to download to; defaults to the working directory
  • check.size: T or F: should the function pause before downloading data and warn you about the size of your download? Defaults to T; if you are using this function within a script or batch process you will want to set it to F.
  • easting: byTileAOP() only. Vector of easting UTM coordinates whose corresponding tiles you want to download
  • northing: byTileAOP() only. Vector of northing UTM coordinates whose corresponding tiles you want to download
  • buffer: byTileAOP() only. Size in meters of buffer to include around coordinates when deciding which tiles to download
  • token: Optional NEON API token for faster downloads.
  • chunk_size: Only in Python. Set the chunk size of chunked downloads, can improve efficiency in some cases. Defaults to 1 MB.

Here, we’ll download one tile of Ecosystem structure (Canopy Height Model) (DP3.30015.001) from WREF in 2017.

R

byTileAOP(dpID="DP3.30015.001", site="WREF", 
          year=2017,easting=580000, 
          northing=5075000, 
          savepath="~/Downloads")

Python

nu.by_tile_aop(dpid="DP3.30015.001", site="WREF", 
               year=2017,easting=580000, 
               northing=5075000, 
               savepath=os.path.expanduser(
                 "~/Downloads"))

In the directory indicated in savepath, you should now have a folder named DP3.30015.001 with several nested subfolders, leading to a tif file of a canopy height model tile.

Navigate data downloads: AOP

To work with AOP data, the best bet in R is the terra package. It has functionality for most analyses you might want to do. In Python, we’ll use the rasterio package here; explore NEON remote sensing tutorials for more guidance.

First let’s read in the tile we downloaded:

R

chm <- rast("~/Downloads/DP3.30015.001/neon-aop-products/2017/FullSite/D16/2017_WREF_1/L3/DiscreteLidar/CanopyHeightModelGtif/NEON_D16_WREF_DP3_580000_5075000_CHM.tif")

Python


chm = rasterio.open(os.path.expanduser("~/Downloads/DP3.30015.001/neon-aop-products/2017/FullSite/D16/2017_WREF_1/L3/DiscreteLidar/CanopyHeightModelGtif/NEON_D16_WREF_DP3_580000_5075000_CHM.tif"))

Plot canopy height model

R

plot(chm, col=topo.colors(6))

Python

plt.imshow(chm.read(1))
plt.show()

Now we can see canopy height across the downloaded tile; the tallest trees are over 60 meters, not surprising in the Pacific Northwest. There is a clearing or clear cut in the lower right quadrant.

Next steps

Now that you’ve learned the basics of downloading and understanding NEON data, where should you go to learn more? There are many more NEON tutorials to explore, including how to align remote sensing and ground-based measurements, a deep dive into the data quality flagging in the sensor data products, and much more. For a recommended suite of tutorials for new users, check out the Getting Started with NEON Data tutorial series.

Pagination

  • First page
  • Previous page
  • …
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • Current page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • …
  • Next page
  • Last page
Subscribe to
NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • About Us
  • Newsroom
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2025

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.