Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • About Us
    • Overview
      • Spatial and Temporal Design
      • History
    • Vision and Management
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups (TWGs)
    • FAQ
    • Contact Us
      • Contact NEON Biorepository
      • Field Offices
    • User Accounts
    • Staff
    • Code of Conduct

    About Us

  • Data & Samples
    • Data Portal
      • Explore Data Products
      • Data Availability Charts
      • Spatial Data & Maps
      • Document Library
      • API & GraphQL
      • Prototype Data
      • External Lab Data Ingest (restricted)
    • Data Themes
      • Biogeochemistry
      • Ecohydrology
      • Land Cover and Processes
      • Organisms, Populations, and Communities
    • Samples & Specimens
      • Discover and Use NEON Samples
        • Sample Types
        • Sample Repositories
        • Sample Explorer
        • Megapit and Distributed Initial Characterization Soil Archives
      • Sample Processing
      • Sample Quality
      • Taxonomic Lists
    • Collection Methods
      • Protocols & Standardized Methods
      • Airborne Remote Sensing
        • Flight Box Design
        • Flight Schedules and Coverage
        • Daily Flight Reports
          • AOP Flight Report Sign Up
        • Camera
        • Imaging Spectrometer
        • Lidar
      • Automated Instruments
        • Site Level Sampling Design
        • Sensor Collection Frequency
        • Instrumented Collection Types
          • Meteorology
          • Phenocams
          • Soil Sensors
          • Ground Water
          • Surface Water
      • Observational Sampling
        • Site Level Sampling Design
        • Sampling Schedules
        • Observation Types
          • Aquatic Organisms
            • Aquatic Microbes
            • Fish
            • Macroinvertebrates & Zooplankton
            • Periphyton, Phytoplankton, and Aquatic Plants
          • Terrestrial Organisms
            • Birds
            • Ground Beetles
            • Mosquitoes
            • Small Mammals
            • Soil Microbes
            • Terrestrial Plants
            • Ticks
          • Hydrology & Geomorphology
            • Discharge
            • Geomorphology
          • Biogeochemistry
          • DNA Sequences
          • Pathogens
          • Sediments
          • Soils
            • Soil Descriptions
        • Optimizing the Observational Sampling Designs
    • Data Notifications
    • Data Guidelines and Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
      • Usage Policies
    • Data Management
      • Data Availability
      • Data Formats and Conventions
      • Data Processing
      • Data Quality
      • Data Product Bundles
      • Data Product Revisions and Releases
        • Release 2021
        • Release 2022
        • Release 2023
        • Release 2024
        • Release-2025
      • NEON and Google
      • Externally Hosted Data

    Data & Samples

  • Field Sites
    • About Field Sites and Domains
    • Explore Field Sites
    • Site Management Data Product

    Field Sites

  • Impact
    • Observatory Blog
    • Case Studies
    • Papers & Publications
    • Newsroom
      • NEON in the News
      • Newsletter Archive
      • Newsletter Sign Up

    Impact

  • Resources
    • Getting Started with NEON Data & Resources
    • Documents and Communication Resources
      • Papers & Publications
      • Document Library
      • Outreach Materials
    • Code Hub
      • Code Resources Guidelines
      • Code Resources Submission
      • NEON's GitHub Organization Homepage
    • Learning Hub
      • Science Videos
      • Tutorials
      • Workshops & Courses
      • Teaching Modules
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Funding Opportunities

    Resources

  • Get Involved
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • Upcoming Events
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NEON Science Summit
      • NCAR-NEON-Community Collaborations
        • NCAR-NEON Community Steering Committee
    • Community Engagement
      • How Community Feedback Impacts NEON Operations
    • Science Seminars and Data Skills Webinars
      • Past Years
    • Work Opportunities
      • Careers
      • Seasonal Fieldwork
      • Internships
        • Intern Alumni
    • Partners

    Get Involved

  • My Account
  • Search

Search

Learning Hub

  • Science Videos
  • Tutorials
  • Workshops & Courses
  • Teaching Modules

Breadcrumb

  1. Resources
  2. Learning Hub
  3. Tutorials
  4. Going On The Grid -- An Intro to Gridding & Spatial Interpolation

Tutorial

Going On The Grid -- An Intro to Gridding & Spatial Interpolation

Authors: Leah Wasser, Tristan Goulden

Last Updated: Feb 5, 2024

In this tutorial was originally created for an ESA brown-bag workshop. Here we present the main graphics and topics covered in the workshop.

Additional Resources

  • Learn more about LiDAR data in our tutorial The Basics of LiDAR - Light Detection and Ranging - Remote Sensing.
  • Learn more about Digital Surface Models, Digital Terrain Models and Canopy Height Models in our tutorial What is a CHM, DSM and DTM? About Gridded, Raster LiDAR Data.

How Does LiDAR Works?

About Rasters

For a full tutorial on rasters & raster data, please go through the Intro to Raster Data in R tutorial which provides a foundational concepts even if you aren't working with R.

A raster is a dataset made up of cells or pixels. Each pixel represents a value associated with a region on the earth’s surface.

The spatial resolution of a raster refers the size of each cell in meters. This size in turn relates to the area on the ground that the pixel represents. Source: National Ecological Observatory Network

For more on raster resolution, see our tutorial on The Relationship Between Raster Resolution, Spatial Extent & Number of Pixels.

Creating Surfaces (Rasters) From Points

There are several ways that we can get from the point data collected by lidar to the surface data that we want for different Digital Elevation Models or similar data we use in analyses and mapping.

Basic gridding does not allow for the recovery/classification of data in any area where data are missing. Interpolation (including Triangulated Irregular Network (TIN) Interpolation) allows for gaps to be covered so that there are not holes in the resulting raster surface.

Interpolation can be done in a number of different ways, some of which are deterministic and some are probabilistic.

When converting a set of sample points to a grid, there are many different approaches that should be considered. Source: National Ecological Observatory Network

Gridding Points

When creating a raster, you may chose to perform a direct gridding of the data. This means that you calculate one value for every cell in the raster where there are sample points. This value may be a mean of all points, a max, min or some other mathematical function. All other cells will then have no data values associated with them. This means you may have gaps in your data if the point spacing is not well distributed with at least one data point within the spatial coverage of each raster cell.

When you directly grid a dataset, values will only be calculated for cells that overlap with data points. Thus, data gaps will not be filled. Source: National Ecological Observatory Network

We can create a raster from points through a process called gridding. Gridding is the process of taking a set of points and using them to create a surface composed of a regular grid.

Animation showing the general process of taking lidar point clouds and converting them to a raster format. Source: Tristan Goulden, National Ecological Observatory Network

Spatial Interpolation

Spatial interpolation involves calculating the value for a query point (or a raster cell) with an unknown value from a set of known sample point values that are distributed across an area. There is a general assumption that points closer to the query point are more strongly related to that cell than those farther away. However this general assumption is applied differently across different interpolation functions.

Interpolation methods will estimate values for cells where no known values exist.

Deterministic & Probabilistic Interpolators

There are two main types of interpolation approaches:

  • Deterministic: create surfaces directly from measured points using a weighted distance or area function.
  • Probabilistic (Geostatistical): utilize the statistical properties of the measured points. Probabilistic techniques quantify the spatial auto-correlation among measured points and account for the spatial configuration of the sample points around the prediction location.

Different methods of interpolation are better for different datasets. This table lays out the strengths of some of the more common interpolation methods.

Abbreviations: TIN=Triangulated Irregular Network, IDW=Inverse Distance Weighted interpolation. Source: National Ecological Observatory Network

We will focus on deterministic methods in this tutorial.

Deterministic Interpolation Methods

Let's look at a few different deterministic interpolation methods to understand how different methods can affect an output raster.

Inverse Distance Weighted (IDW)

Inverse distance weighted (IDW) interpolation calculates the values of a query point (a cell with an unknown value) using a linearly weighted combination of values from nearby points.

IDW interpolation calculates the value of an unknown cell center value (a query point) using surrounding points with the assumption that closest points will be the most similar to the value of interest. Source: QGIS

Key Attributes of IDW Interpolation

  • The raster is derived based upon an assumed linear relationship between the location of interest and the distance to surrounding sample points. In other words, sample points closest to the cell of interest are assumed to be more related to its value than those further away.ID
  • Bounded/exact estimation, hence can not interpolate beyond the min/max range of data point values. This estimate within the range of existing sample point values can yield "flattened" peaks and valleys -- especially if the data didn't capture those high and low points.
  • Interpolated points are average values
  • Good for point data that are equally distributed and dense. Assumes a consistent trend or relationship between points and does not accommodate trends within the data(e.g. east to west, elevational, etc).
IDW interpolation looks at the linear distance between the unknown value and surrounding points. Source: J. Abrecht, CUNY

Power

The power value changes the "weighting" of the IDW interpolation by specifying how strongly points further away from the query point impact the calculated value for that point. Power values range from 0-3+ with a default settings generally being 2. A larger power value produces a more localized result - values further away from the cell have less impact on it's calculated value, values closer to the cell impact it's value more. A smaller power value produces a more averaged result where sample points further away from the cell have a greater impact on the cell's calculated value.

For visualizations of IDW interpolation, see Jochen Albrecht's Inverse Distance Weighted 3D Concepts Lecture.

The impacts of power:

  • lower power values more averaged result, potential for a smoother surface. As power decreases, the influence of sample points is larger. This yields a smoother surface that is more averaged.

  • greater power values: more localized result, potential for more peaks and valleys around sample point locations. As power increases, the influence of sample points falls off more rapidly with distance. The query cell values become more localized and less averaged.

IDW Take Home Points

IDW is good for:

  • Data whose distribution is strongly (and linearly) correlated with distance. For example, noise falls off very predictably with distance.
  • Providing explicit control over the influence of distance (compared to Spline or Kriging).

IDW is not so good for:

  • Data whose distribution depends on more complex sets of variables because it can account only for the effects of distance.

Other features:

  • You can create a smoother surface by decreasing the power, increasing the number of sample points used or increasing the search (sample points) radius.
  • You can create a surface that more closely represents the peaks and dips of your sample points by decreasing the number of sample points used, decreasing the search radius or increasing the power.
  • You can increase IDW surface accuracy by adding breaklines to the interpolation process that serve as barriers. Breaklines represent abrupt changes in elevation, such as cliffs.

Spline

Spline interpolation fits a curved surface through the sample points of your dataset. Imagine stretching a rubber sheet across your points and gluing it to each sample point along the way -- what you get is a smooth stretched sheet with bumps and valleys. Unlike IDW, spline can estimate values above and below the min and max values of your sample points. Thus it is good for estimating high and low values not already represented in your data.

For visualizations of Spline interpolation, see Jochen Albrecht's Spline 3D Concepts Lecture.

Regularized & Tension Spline

There are two types of curved surfaces that can be fit when using spline interpolation:

  1. Tension spline: a flatter surface that forces estimated values to stay closer to the known sample points.

  2. Regularized spline: a more elastic surface that is more likely to estimate above and below the known sample points.

Regular vs tension spline.

For more on spline interpolation, see ESRI's How Splines Work background materials.

Spline Take Home Points

Spline is good for:

  • Estimating values outside of the range of sample input data.
  • Creating a smooth continuous surface.

Spline is not so good for:

  • Points that are close together and have large value differences. Slope calculations can yield over and underestimation.
  • Data with large, sudden changes in values that need to be represented (e.g., fault lines, extreme vertical topographic changes, etc). NOTE: some tools like ArcGIS have introduced a spline with barriers function in recent years.

Natural Neighbor Interpolation

Natural neighbor interpolation finds the closest subset of data points to the query point of interest. It then applies weights to those points to calculate an average estimated value based upon their proportionate areas derived from their corresponding Voronoi polygons (see figure below for definition). The natural neighbor interpolator adapts locally to the input data using points surrounding the query point of interest. Thus there is no radius, number of points or other settings needed when using this approach.

This interpolation method works equally well on regular and irregularly spaced data.

A Voronoi diagram is created by taking pairs of points that are close together and drawing a line that is equidistant between them and perpendicular to the line connecting them. Source: Wikipedia

Natural neighbor interpolation uses the area of each Voronoi polygon associated with the surrounding points to derive a weight that is then used to calculate an estimated value for the query point of interest.

To calculate the weighted area around a query point, a secondary Voronoi diagram is created using the immediately neighboring points and mapped on top of the original Voronoi diagram created using the known sample points (image below).

A secondary Voronoi diagram is created using the immediately neighboring points and mapped on top of the original Voronoi diagram created using the known sample points to created a weighted Natural neighbor interpolated raster. Image Source: ESRI

For more on natural neighbor interpolation, see ESRI's How Natural Neighbor Works documentation.

Natural Neighbor Take Home Points

Natural Neighbor Interpolation is good for:

  • Data where spatial distribution is variable (and data that are equally distributed).
  • Categorical data.
  • Providing a smoother output raster.

Natural Neighbor Interpolation is not as good for:

  • Data where the interpolation needs to be spatially constrained (to a particular number of points of distance).
  • Data where sample points further away from or beyond the immediate "neighbor points" need to be considered in the estimation.

Other features:

  • Good as a local interpolator
  • Interpolated values fall within the range of values of the sample data
  • Surface passes through input samples; not above or below
  • Supports breaklines

Triangulated Irregular Network (TIN)

The Triangulated Irregular Network (TIN) is a vector based surface where sample points (nodes) are connected by a series of edges creating a triangulated surface. The TIN format remains the most true to the point distribution, density and spacing of a dataset. It also may yield the largest file size!

A TIN creating from LiDAR data collected by the NEON AOP over the NEON San Joaquin (SJER) field site.
  • For more on the TIN process see this information from ESRI: Overview of TINs

Interpolation in R, GrassGIS, or QGIS

These additional resources point to tools and information for gridding in R, GRASS GIS and QGIS.

R functions

The packages and functions maybe useful when creating grids in R.

  • gstat::idw()
  • stats::loess()
  • akima::interp()
  • fields::Tps()
  • fields::splint()
  • spatial::surf.ls()
  • geospt::rbf()

QGIS tools

  • Check out the documentation on different interpolation plugins Interpolation
  • Check out the documentation on how to convert a vector file to a raster: Rasterize (vector to raster).

The QGIS processing toolbox provides easy access to Grass commands.

GrassGIS commands

  • Check out the documentation on GRASS GIS Integration Starting the GRASS plugin

The following commands may be useful if you are working with GrassGIS.

  • v.surf.idw - Surface interpolation from vector point data by Inverse Distance Squared Weighting
  • v.surf.bspline - Bicubic or bilinear spline interpolation with Tykhonov regularization
  • v.surf.rst - Spatial approximation and topographic analysis using regularized spline with tension
  • v.to.rast.value - Converts (rasterize) a vector layer into a raster layer
  • v.delaunay - Creates a Delaunay triangulation from an input vector map containing points or centroids
  • v.voronoi - Creates a Voronoi diagram from an input vector layer containing points

Questions?

If you have questions or comments on this content, please contact us.

Contact Us
NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • About Us
  • Newsroom
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2025

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.