Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • About
    • NEON Overview
      • Vision and Management
      • Spatial and Temporal Design
      • History
    • About the NEON Biorepository
      • ASU Biorepository Staff
      • Contact the NEON Biorepository
    • Observatory Blog
    • Newsletters
    • Staff
    • FAQ
    • Contact Us

    About

  • Data
    • Data Portal
      • Data Availability Charts
      • API & GraphQL
      • Prototype Data
      • Externally Hosted Data
    • Data Collection Methods
      • Airborne Observation Platform (AOP)
      • Instrument System (IS)
        • Instrumented Collection Types
        • Aquatic Instrument System (AIS)
        • Terrestrial Instrument System (TIS)
      • Observational System (OS)
        • Observation Types
        • Observational Sampling Design
        • Sampling Schedules
        • Taxonomic Lists Used by Field Staff
        • Optimizing the Observational Sampling Designs
      • Protocols & Standardized Methods
    • Getting Started with NEON Data
      • neonUtilities for R and Python
      • Learning Hub
      • Code Hub
    • Using Data
      • Data Formats and Conventions
      • Released, Provisional, and Revised Data
      • Data Product Bundles
      • Usage Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
    • Data Notifications
    • NEON Data Management
      • Data Availability
      • Data Processing
      • Data Quality

    Data

  • Samples & Specimens
    • Biorepository Sample Portal at ASU
    • About Samples
      • Sample Types
      • Sample Repositories
      • Megapit and Distributed Initial Characterization Soil Archives
    • Finding and Accessing Sample Data
      • Species Checklists
      • Sample Explorer - Relationships and Data
      • Biorepository API
    • Requesting and Using Samples
      • Loans & Archival Requests
      • Usage Policies

    Samples & Specimens

  • Field Sites
    • Field Site Map and Info
    • Spatial Layers & Printable Maps

    Field Sites

  • Resources
    • Getting Started with NEON Data
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Code Hub
      • neonUtilities for R and Python
      • Code Resources Guidelines
      • Code Resources Submission
      • NEON's GitHub Organization Homepage
    • Learning Hub
      • Tutorials
      • Workshops & Courses
      • Science Videos
      • Teaching Modules
    • Science Seminars and Data Skills Webinars
    • Document Library
    • Funding Opportunities

    Resources

  • Impact
    • Research Highlights
    • Papers & Publications
    • NEON in the News

    Impact

  • Get Involved
    • Upcoming Events
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NCAR-NEON-Community Collaborations
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Partnerships
    • Community Engagement
    • Work Opportunities

    Get Involved

  • My Account
  • Search

Search

Welcome to the updated NEON website! This site features more intuitive navigation and a seamlessly integrated Biorepository portal, making it easier to explore NEON data, samples and resources. For a brief summary of changes visit this page. Your feedback is welcome through our webform through February 20.

Breadcrumb

  1. Featured Expert: Dr. Stefan Metzger

Featured Expert: Dr. Stefan Metzger

Stefan Metzger

Stefan Metzger, Principal Research Scientist, Surface-Atmosphere Exchange

December 2017

Each day, NEON’s surface-atmosphere exchange sensors generate billions of data points. Stefan Metzger’s job is to turn those data points into information that is useful for the research community and societal decision making.

As a lead on the NEON surface-atmosphere exchange team, he is responsible for the development of algorithms that create publicly available data products. Also known as “flux”, surface-atmosphere exchange quantifies how much heat, water, and other trace gases such as carbon dioxide are transported between all things living and nonliving on the ground and the air above. Eddy-covariance is one of the most direct methods to determine this surface-atmosphere exchange: at NEON, 47 terrestrial field sites are equipped with sensors on atmospheric flux towers that gather data on wind, temperature and gas concentrations at different vertical levels. The resulting data products help researchers better understand how heat and gasses are transferred between soil, plants, and the atmosphere; and the balance of energy and gasses going into and out of the atmosphere. The socio-economic applications of the data range from vegetation and water adaptation strategies to severe weather forecasting and are central to our understanding of sustainable future scenarios.

Sensor data at the sites are collected up to 40 times per second across more than 100 channels. Each day, this generates millions of data points for each of the 47 terrestrial field sites. Digesting and processing this data requires advanced analytics capabilities: together with his team, Stefan created algorithms that consolidate the raw data into products with time resolutions of minutes to hours. These present the findings in ways that are meaningful to researchers and are central to answering a broad range of critical questions facing research and society.

Stefan’s next phase of research and development focuses on the integration of the automated sensor data with other data sources, including remote sensing data generated by NEON as well as other agencies such as NASA. He explains, “The NEON flux towers give us a lot of depth of information at a local level, but their spatial coverage is very limited—on the order of hectares. With airborne and satellite data one can get close to global coverage, but it is delivered in square kilometer increments and intermittent in time. These differences in the data characteristics gathered by the different systems make it difficult to join their information in truly synergistic ways.” Stefan is currently working on a project to combine in-situ and remote sensing data so that researchers are able to tap into the full complement of available information.

This work resulted in the paper "Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations," in Agricultural and Forest Meteorology. A follow-up paper led by graduate student K. Xu explores the practical application and impact of this novel data fusion concept.

Stefan joined NEON as a postdoctoral scholar in 2011. At that time he was responsible for the scientific design of the eddy-covariance sensor systems that are collecting flux data today. Starting in 2014, he continued his work as a Staff Scientist, designing the data processing components of the system. This work resulted in the open-source, portable, reproducible and community-extensible eddy4R software. Since 2016 he has been leading NEON’s surface-atmosphere exchange team together with his colleague Hongyan Luo. The team, which currently consists of five scientists and 10 software engineers, delivers NEON’s eddy-covariance data processing pipeline.

Stefan holds a Ph.D. in Micrometeorology from Bayreuth University in Germany and a M.Sc. in Geoecology, and Chinese Language and Culture. His Ph.D. thesis focused on the use of weight-shift microlight aircraft for measuring the turbulent exchange over complex terrain. During both his M.Sc and Ph.D. studies he spent extended periods of time in China, where he worked with the Chinese Academy of Sciences on field measurements in Tibet and research flights in Inner Mongolia, among others. In addition to his work at NEON, he is an Adjunct Assistant Professor at the University of Wisconsin, Department of Atmospheric and Oceanic Sciences.

As the NEON project progresses, Stefan sees a need for continued work in harmonizing and synergizing data products across networks for the study of biogeochemistry, weather, and climate. “There is a lot of data out there, but it’s not easy to compare and use together to draw meaningful conclusions,” he says. A first step is the inclusion of NEON’s surface-atmosphere exchange data products in the AmeriFlux network of the Americas, and its global umbrella network, FLUXNET. “Moving forward, one key will be learning how to use data from various systems and networks more effectively instead of relying on more and more equipment in the field alone.”

Related Content

Putting NEON Assets to Use for the Research Community
NEON Data Science Challenge: Identifying Trees Using Remote Sensing Data
NEON and LTER Share Space and Data in Pacific Northwest
NEON and Texas A&M Consider Collaboration for Flux Data
NEON Construction on Track for 90% Completion by End of Year
NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • About Us
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2026

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.