Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • About Us
    • Overview
      • Spatial and Temporal Design
      • History
    • Vision and Management
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups (TWGs)
    • FAQ
    • Contact Us
      • Contact NEON Biorepository
      • Field Offices
    • User Accounts
    • Staff
    • Code of Conduct

    About Us

  • Data & Samples
    • Data Portal
      • Explore Data Products
      • Data Availability Charts
      • Spatial Data & Maps
      • Document Library
      • API & GraphQL
      • Prototype Data
      • External Lab Data Ingest (restricted)
    • Data Themes
      • Biogeochemistry
      • Ecohydrology
      • Land Cover and Processes
      • Organisms, Populations, and Communities
    • Samples & Specimens
      • Discover and Use NEON Samples
        • Sample Types
        • Sample Repositories
        • Sample Explorer
        • Megapit and Distributed Initial Characterization Soil Archives
      • Sample Processing
      • Sample Quality
      • Taxonomic Lists
    • Collection Methods
      • Protocols & Standardized Methods
      • Airborne Remote Sensing
        • Flight Box Design
        • Flight Schedules and Coverage
        • Daily Flight Reports
          • AOP Flight Report Sign Up
        • Camera
        • Imaging Spectrometer
        • Lidar
      • Automated Instruments
        • Site Level Sampling Design
        • Sensor Collection Frequency
        • Instrumented Collection Types
          • Meteorology
          • Phenocams
          • Soil Sensors
          • Ground Water
          • Surface Water
      • Observational Sampling
        • Site Level Sampling Design
        • Sampling Schedules
        • Observation Types
          • Aquatic Organisms
            • Aquatic Microbes
            • Fish
            • Macroinvertebrates & Zooplankton
            • Periphyton, Phytoplankton, and Aquatic Plants
          • Terrestrial Organisms
            • Birds
            • Ground Beetles
            • Mosquitoes
            • Small Mammals
            • Soil Microbes
            • Terrestrial Plants
            • Ticks
          • Hydrology & Geomorphology
            • Discharge
            • Geomorphology
          • Biogeochemistry
          • DNA Sequences
          • Pathogens
          • Sediments
          • Soils
            • Soil Descriptions
        • Optimizing the Observational Sampling Designs
    • Data Notifications
    • Data Guidelines and Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
      • Usage Policies
    • Data Management
      • Data Availability
      • Data Formats and Conventions
      • Data Processing
      • Data Quality
      • Data Product Bundles
      • Data Product Revisions and Releases
        • Release 2021
        • Release 2022
        • Release 2023
        • Release 2024
        • Release-2025
      • NEON and Google
      • Externally Hosted Data

    Data & Samples

  • Field Sites
    • About Field Sites and Domains
    • Explore Field Sites
    • Site Management Data Product

    Field Sites

  • Impact
    • Observatory Blog
    • Case Studies
    • Papers & Publications
    • Newsroom
      • NEON in the News
      • Newsletter Archive
      • Newsletter Sign Up

    Impact

  • Resources
    • Getting Started with NEON Data & Resources
    • Documents and Communication Resources
      • Papers & Publications
      • Document Library
      • Outreach Materials
    • Code Hub
      • Code Resources Guidelines
      • Code Resources Submission
      • NEON's GitHub Organization Homepage
    • Learning Hub
      • Science Videos
      • Tutorials
      • Workshops & Courses
      • Teaching Modules
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Funding Opportunities

    Resources

  • Get Involved
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • Upcoming Events
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NEON Science Summit
      • NCAR-NEON-Community Collaborations
        • NCAR-NEON Community Steering Committee
    • Community Engagement
      • How Community Feedback Impacts NEON Operations
    • Science Seminars and Data Skills Webinars
      • Past Years
    • Work Opportunities
      • Careers
      • Seasonal Fieldwork
      • Internships
        • Intern Alumni
    • Partners

    Get Involved

  • My Account
  • Search

Search

Impact

  • Observatory Blog
  • Case Studies
  • Papers & Publications
  • Newsroom

Breadcrumb

  1. Impact
  2. Observatory Blog
  3. Modeling the Spread of Ticks—And the Diseases They Carry

Case Study

Modeling the Spread of Ticks—And the Diseases They Carry

May 27, 2020

Field technician conducting a tick drag amongst trees

Tick populations are on the move in the U.S. The lone star tick (Amblyomma americanum) is expanding its range westward into the Great Plains. Deer ticks (Ixodes scapularis), American dog ticks (Dermacentor variabilis), and Gulf Coast ticks (Amblyomma maculatum) are migrating north into the Upper Midwest and Northeast. With them, they bring an array of tick-borne diseases such as Lyme disease, Rocky Mountain Spotted Fever, ehrlichiosis, anaplasmosis, and tularemia.

Understanding why tick populations are increasing, and why some species are spreading into new geographic areas, is of critical importance to public health. However, the environmental drivers behind tick abundance, range, and diversity are not yet well understood. Two researchers from the University of Florida (UF), Samantha Wisely and Geraldine Klarenberg, are working to change that. Their study, “Evaluation of NEON Data to Model Spatio-Temporal Tick Dynamics in Florida,” used NEON data to develop a model of tick population dynamics at the Ordway Swisher Biological Station (OSBS) field site.

Building a Model of Tick Population Dynamics

Samantha Wisely is a professor in the UF Department of Wildlife Ecology and Conservation. Geraldine Klarenberg is a lecturer in Quantitative Data Science in the UF School of Forest Resources and Conservation. Together, they are building a model that simulates how landscape features, climate, and other environmental variables influence tick abundance and diversity in space and over time. Eventually, their model could be used to provide better predictions for how tick populations are growing and spreading.

Samantha says, “We’re seeing tick species in places where they have never been seen before. We need to understand the environmental drivers. We can speculate that changes in climate may be facilitating the spread of some species northward, for example, but we don’t know exactly what environmental conditions are driving the population changes.”

Their study used five years of NEON data from OSBS to build a model of tick abundance across the site. The model correlates tick abundance to a variety of other NEON data products, including precipitation, humidity, temperature, woody plant vegetation structure, herbaceous vegetation, plant biodiversity, and non-vegetative cover (e.g., leaf litter, woody organic material, soil and standing dead material). The goal was to determine how these variables are correlated with the number and type of ticks found during drag-cloth sampling. The NEON program collects tick sampling data at OSBS roughly every three weeks from March through September/October, so researchers can look at how tick counts vary across both space and time at the site.

Tick populations were found to be increasing across most sampling plots at OSBS. The conditions most closely associated with increases in tick abundance were plant biodiversity (the number of different plant species present on a plot), the amount of organic litter covering the ground, and the amount of woody organic material. Geraldine says, “These results are not surprising, but it is great that we are able to show the relationships in the model using the NEON data. This gives us confidence that we can extend this model to look at tick population dynamics in other areas.”

The model was able to successfully simulate tick populations at OSBS. Estimates derived by the model showed a high degree of agreement with actual observed tick counts at each plot over the course of the sampling season. The goal is to eventually create a predictive model that will allow researchers and public policy makers to predict how the populations of different tick species are changing across both time and space in a variety of ecosystems and habitats.

Forest at OSBS

Forest at OSBS

 

The Importance of Large-Scale Networks for Studying Tick Ecology

The availability of consistent, reliable long-term data is essential to developing these kinds of models. While tick data has long been collected by the Centers for Disease Control and Prevention (CDC) and individual researchers, these studies tend to be limited in both the geographic area they cover and the length of time they are conducted. Because of differences in study design, it can be difficult to compare data from studies conducted by different researchers to get a clear picture of ecological differences between geographic regions or across time.

Large observatory networks like the NEON program generate enormous amounts of data that can be used by other researchers to explore ecological questions that can’t be easily addressed in limited-scope individual studies. The NEON program will collect data using the same methods at each field site for its entire 30-year duration. This allows data to be easily compared across large geographic and temporal scales, so researchers can get a better picture of ecological trends and the variables that are driving them. This scientific design was a key reason that Geraldine and Samantha opted to use NEON data to build their model.

Geraldine says, “Ecology and the environment are incredibly complex in several dimensions over both space and time. Initiatives [like the NEON program] are incredibly important, because we as humans have a hard time collecting enough data to see what is changing over time around us. NEON is trying to address this complexity by providing long-term ecological data on a continental scale. It’s really great to have this data set.”

Predicting the Spread of Tick-Borne Diseases

Samantha and Geraldine hope to extend their model beyond OSBS to look at tick populations and environmental drivers at other NEON sites. Additional data will enable them to compare results across different types of ecosystems and build a more robust model of how tick populations are changing over time in different regions.

This work is important because the spread of ticks goes hand-in-hand with an increase in the prevalence of tick-borne diseases across the U.S. In 2018, the CDC sent a report to Congress raising the alarm about the increases in tick-borne diseases such as Lyme disease, which infects an estimated 300,000 – 400,000 people each year and results in more than $1.3 billion in direct medical costs annually. Lyme disease cases have skyrocketed by more than 250% in the north-central states and more than 300% in the northeastern U.S. The disease continues to move into new areas where it had not previously been recorded. Other tick-borne diseases are also on the rise and spreading into new geographic regions.

The current model did not incorporate pathogen status data, but the team hopes to use NEON pathogen data in future studies. The NEON program tests different species of ticks for a wide range of different pathogens including disease-causing genera Anaplasma (anaplasmisis), Babesia (babesiosis), Borrelia (Lyme disease), Ehrlichia (monocytic ehrlichosis), Francisella (tularemia), and Rickettsia (Rocky Mountain Spotted Fever). Starting in 2020, NEON is also testing rodents for tick-borne pathogens as part of the Rodent-borne Pathogen Status data product. Tick data and related pathogen data are openly available through the NEON data portal.

Samantha’s interest in tick-borne diseases stems from ongoing research she is conducting at the University of Florida as part of the CDC Southeastern Center of Excellence in Vector Borne Diseases. As a wildlife ecologist, she is interested in how wildlife diseases impact humans, livestock and other wildlife.

Understanding how and why ticks are spreading will help to inform better public health policy for disease detection and prevention. Insights into environmental variables that influence their spread may also lead to better land management practices for tick control. Samantha says, “We can’t turn climate around immediately, but we can change habitat. Perhaps we can burn more frequently to eliminate woody debris on the ground or use other control measures to minimize the chances that people will come in contact with ticks. When we understand the drivers of tick abundance, we may be able to better manage it and let the public know.”

Share

Related Posts:

Reconstructing the Mosquito Family Tree with DNA

July 17, 2024

Hand holding a mosquito

Update to foliar chlorophyll data quality issue related to sample storage temperature

November 4, 2024

NEON at ESA 2024: Forecasting, Partnerships, Samples, and More

August 16, 2024

Ryan McClure behind the NEON exhibit booth at ESA 2024
NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • About Us
  • Newsroom
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2025

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.