Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • About Us
    • Overview
      • Spatial and Temporal Design
      • History
    • Vision and Management
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups (TWGs)
    • FAQ
    • Contact Us
      • Contact NEON Biorepository
      • Field Offices
    • User Accounts
    • Staff
    • Code of Conduct

    About Us

  • Data & Samples
    • Data Portal
      • Explore Data Products
      • Data Availability Charts
      • Spatial Data & Maps
      • Document Library
      • API & GraphQL
      • Prototype Data
      • External Lab Data Ingest (restricted)
    • Data Themes
      • Biogeochemistry
      • Ecohydrology
      • Land Cover and Processes
      • Organisms, Populations, and Communities
    • Samples & Specimens
      • Discover and Use NEON Samples
        • Sample Types
        • Sample Repositories
        • Sample Explorer
        • Megapit and Distributed Initial Characterization Soil Archives
      • Sample Processing
      • Sample Quality
      • Taxonomic Lists
    • Collection Methods
      • Protocols & Standardized Methods
      • Airborne Remote Sensing
        • Flight Box Design
        • Flight Schedules and Coverage
        • Daily Flight Reports
          • AOP Flight Report Sign Up
        • Camera
        • Imaging Spectrometer
        • Lidar
      • Automated Instruments
        • Site Level Sampling Design
        • Sensor Collection Frequency
        • Instrumented Collection Types
          • Meteorology
          • Phenocams
          • Soil Sensors
          • Ground Water
          • Surface Water
      • Observational Sampling
        • Site Level Sampling Design
        • Sampling Schedules
        • Observation Types
          • Aquatic Organisms
            • Aquatic Microbes
            • Fish
            • Macroinvertebrates & Zooplankton
            • Periphyton, Phytoplankton, and Aquatic Plants
          • Terrestrial Organisms
            • Birds
            • Ground Beetles
            • Mosquitoes
            • Small Mammals
            • Soil Microbes
            • Terrestrial Plants
            • Ticks
          • Hydrology & Geomorphology
            • Discharge
            • Geomorphology
          • Biogeochemistry
          • DNA Sequences
          • Pathogens
          • Sediments
          • Soils
            • Soil Descriptions
        • Optimizing the Observational Sampling Designs
    • Data Notifications
    • Data Guidelines and Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
      • Usage Policies
    • Data Management
      • Data Availability
      • Data Formats and Conventions
      • Data Processing
      • Data Quality
      • Data Product Bundles
      • Data Product Revisions and Releases
        • Release 2021
        • Release 2022
        • Release 2023
        • Release 2024
        • Release-2025
      • NEON and Google
      • Externally Hosted Data

    Data & Samples

  • Field Sites
    • About Field Sites and Domains
    • Explore Field Sites
    • Site Management Data Product

    Field Sites

  • Impact
    • Observatory Blog
    • Case Studies
    • Papers & Publications
    • Newsroom
      • NEON in the News
      • Newsletter Archive
      • Newsletter Sign Up

    Impact

  • Resources
    • Getting Started with NEON Data & Resources
    • Documents and Communication Resources
      • Papers & Publications
      • Document Library
      • Outreach Materials
    • Code Hub
      • Code Resources Guidelines
      • Code Resources Submission
      • NEON's GitHub Organization Homepage
    • Learning Hub
      • Science Videos
      • Tutorials
      • Workshops & Courses
      • Teaching Modules
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Funding Opportunities

    Resources

  • Get Involved
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • Upcoming Events
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NEON Science Summit
      • NCAR-NEON-Community Collaborations
        • NCAR-NEON Community Steering Committee
    • Community Engagement
      • How Community Feedback Impacts NEON Operations
    • Science Seminars and Data Skills Webinars
      • Past Years
    • Work Opportunities
      • Careers
      • Seasonal Fieldwork
      • Internships
        • Intern Alumni
    • Partners

    Get Involved

  • My Account
  • Search

Search

Impact

  • Observatory Blog
  • Case Studies
  • Papers & Publications
  • Newsroom

Breadcrumb

  1. Impact
  2. Observatory Blog
  3. Using long-term data sets to trace the impacts of environmental policy

Using long-term data sets to trace the impacts of environmental policy

March 28, 2012

Stock Photo of strong winds on a farm
By Michael SanClements
 

Just before I became a staff scientist at NEON, I and colleagues from the University of Colorado, Environmental Protection Agency, and University of Maine took a new a look at some long-term data to help answer a question that has been perplexing scientists for several decades: Why is the amount of dissolved organic matter (the stuff that gives water that brownish-yellowish tint) increasing in lakes and streams of the northeastern United States and Europe? Our study contributed to growing evidence suggesting that it’s a symptom of recovery from acid rain. It also highlighted the ability of environmental policy to impact ecosystem function and the importance of long-term monitoring initiatives, like NEON, to help society ensure basic ecosystem services like clean air and water. Dissolved organic matter (DOM) forms from decomposing plants or from microbe secretions. It's a hodgepodge of carbon-containing compounds that's present in all natural waters and plays a critical role in many important processes within the environment, including serving as a microbial food source, maintaining the pH of aquatic ecosystems, and binding trace metals and pollutants. Changes in DOM have the potential to profoundly affect ecosystem function across large areas of the landscape. Scientists have proposed numerous causes for increasing DOM including rising atmospheric CO2 concentrations, climate warming, nitrogen deposition, and changing hydrology. However, several recent studies have concluded that increasing DOM is linked to changes in soil chemistry resulting from a decrease in acid precipitation facilitated by the Clean Air Act and Clean Air Act Amendments of 1990, the legislation that defines the Environmental Protection Agency’s responsibilities for protecting and improving our nation’s air quality. My colleagues and I tested the hypothesis that increasing DOM is a sign of ecosystems recovering from acid precipitation. To do so, we used long-term lake and atmospheric chemical records and applied a new method, fluorescence spectroscopy, to re-analyze archived water samples collected from a series of lakes in Maine (mapped below) between 1993 and 2009.

View Maine Lakes from DOM/acid sensitivity study in a larger map

Fluorescence spectroscopy works by shining light through a water sample to collect data about the wavelength and intensity of the light emitted after passing through the water. This information can be used to determine the chemical composition and characteristics of DOM within the sample. We used data from the National Atmospheric Deposition Program and the EPA’s New England Long Term Monitoring Program to look for regional trends in acid deposition. The data revealed that sulfate deposition (a major contributor to acid precipitation) declined significantly across the region of this study between 1980 and 2010 (below), while DOM increased in the majority of lakes over the same time period.

 

After establishing that DOM increased while sulfate decreased, we were ready to re-analyze the archived samples we had obtained. Analyzing the samples using fluorescence spectroscopy and a measure called the Fluorescence Index (FI) allowed us to discern whether the DOM in archived samples was derived from terrestrial (think of leaves decomposing on the ground) or microbial (leached or secreted from microbes) sources. Detecting changes in the source of DOM was critical to understanding if declining sulfate and acid rain are responsible for increasing DOM concentrations. Soil organic matter dissolves better under less acidic conditions; meaning that as these ecosystems recover from acid rain, terrestrial DOM production may increase. Eventually, this terrestrial DOM may make its way into streams and lakes resulting in a shift of the DOM signature to a more terrestrial FI. Terrestrial DOM has a lower FI than microbial DOM. So, if decreased acid precipitation is leading to greater terrestrial DOM production, which is in turn being transported to surface waters, then archived lake samples would demonstrate a declining FI (i.e. more terrestrial) over time, right (see conceptual figure here)? And that’s exactly what we found. The conclusions of our research support the hypothesis that increasing DOM in these lakes is the result of a decline in acid rain and subsequent ecosystem recovery due to the Clean Air Act. More importantly, these changes in DOM illustrate that the policy decisions we make, or don’t make, have the ability to alter atmospheric chemistry and the concentration of pollutants and impact ecosystem function. This work also illustrates the importance of publicly funded long-term monitoring initiatives in providing data to inform current and future policy decisions. NEON will provide researchers and the public with data sets capable of answering similar questions but with many more variables, over longer time-scales and much greater geographic areas. An unprecedented, continental scale observatory like NEON will provide future researchers and the general public a framework for understanding changes in parameters ranging from atmospheric, aquatic and terrestrial chemistry to the spread of infectious disease. Furthermore, the thousands of data streams NEON plans to collect will allow us to forecast important ecological changes and may one day be used by future generations to answer questions that don’t even exist yet. Many thanks to my co-authors Dr. Gretchen Oelsner, Dr. Diane McKnight, Dr. John Stoddard, and Dr. Sarah Nelson for their contributions to this work. We currently have another grant underway to further study the relationship between DOM and sulfate, but more about that later! More information about this work in Chemical and Engineering News

Share

Related Posts:

NEON at ESA 2024: Forecasting, Partnerships, Samples, and More

August 16, 2024

Ryan McClure behind the NEON exhibit booth at ESA 2024

Featured Expert: Olivia Chapman

May 27, 2025

Olivia Chapman holding a hedgehog at night

NEON Data Release 2025 is available

January 29, 2025

NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • About Us
  • Newsroom
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2025

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.