Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • About
    • NEON Overview
      • Vision and Management
      • Spatial and Temporal Design
      • History
    • About the NEON Biorepository
      • ASU Biorepository Staff
      • Contact the NEON Biorepository
    • Observatory Blog
    • Newsletters
    • Staff
    • FAQ
    • Contact Us

    About

  • Data
    • Data Portal
      • Data Availability Charts
      • API & GraphQL
      • Prototype Data
      • Externally Hosted Data
    • Data Collection Methods
      • Airborne Observation Platform (AOP)
      • Instrument System (IS)
        • Instrumented Collection Types
        • Aquatic Instrument System (AIS)
        • Terrestrial Instrument System (TIS)
      • Observational System (OS)
        • Observation Types
        • Observational Sampling Design
        • Sampling Schedules
        • Taxonomic Lists Used by Field Staff
        • Optimizing the Observational Sampling Designs
      • Protocols & Standardized Methods
    • Getting Started with NEON Data
      • neonUtilities for R and Python
      • Learning Hub
      • Code Hub
    • Using Data
      • Data Formats and Conventions
      • Released, Provisional, and Revised Data
      • Data Product Bundles
      • Usage Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
    • Data Notifications
    • NEON Data Management
      • Data Availability
      • Data Processing
      • Data Quality

    Data

  • Samples & Specimens
    • Biorepository Sample Portal at ASU
    • About Samples
      • Sample Types
      • Sample Repositories
      • Megapit and Distributed Initial Characterization Soil Archives
    • Finding and Accessing Sample Data
      • Species Checklists
      • Sample Explorer - Relationships and Data
      • Biorepository API
    • Requesting and Using Samples
      • Loans & Archival Requests
      • Usage Policies

    Samples & Specimens

  • Field Sites
    • Field Site Map and Info
    • Spatial Layers & Printable Maps

    Field Sites

  • Resources
    • Getting Started with NEON Data
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Code Hub
      • neonUtilities for R and Python
      • Code Resources Guidelines
      • Code Resources Submission
      • NEON's GitHub Organization Homepage
    • Learning Hub
      • Tutorials
      • Workshops & Courses
      • Science Videos
      • Teaching Modules
    • Science Seminars and Data Skills Webinars
    • Document Library
    • Funding Opportunities

    Resources

  • Impact
    • Research Highlights
    • Papers & Publications
    • NEON in the News

    Impact

  • Get Involved
    • Upcoming Events
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NCAR-NEON-Community Collaborations
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Partnerships
    • Community Engagement
    • Work Opportunities

    Get Involved

  • My Account
  • Search

Search

About

  • NEON Overview
  • About the NEON Biorepository
  • Observatory Blog
  • Newsletters
  • Staff
  • FAQ
  • Contact Us

Breadcrumb

  1. About
  2. Observatory Blog
  3. Ecological Forecasting: Reducing the Timescale from Centuries to Seasons

Ecological Forecasting: Reducing the Timescale from Centuries to Seasons

February 27, 2018

“The time for ecologists to start forecasting is now,” says Michael Dietze. An ecologist at Boston University, Michael is seeking to arm his peers with tools for near-term ecological forecasting, answering crucial questions such as “how will ecosystems change in the near future?” and “how do human decisions affect these outcomes?”

Michael is the lead author of a new paper, Iterative Near-Term Ecological Forecasting: Needs, Opportunities and Challenges, published in January 2018 in the Proceedings of the National Academies of Sciences (PNAS). His paper is a product of a 2016 NEON-sponsored workshop, Operationalizing Ecological Forecasting, which brought together academic and agency scientists representing a broad range of ecological disciplines.

Recently, Michael also led a workshop in February at the University of Arizona, titled Ecological Knowledge and Predictions: Integrating Across Networks and National Observatories sponsored by the NSF Office of International Science and Engineering (OISE). The workshop focused on how networks and observatories can accelerate ecological knowledge generation and predictive capacity. Workshop participants visited a nearby NEON terrestrial field site at Santa Rita Experimental Range (SRER) to better understand NEON data collection methods.

In his paper, Michael introduces an iterative method of ecological forecasting that relies on feedback from ecological observations to continually refine and update predictions. Currently, most ecological forecasts focus on changes at a centennial scale, predicting trajectories over many decades or several centuries. These long-range forecasts are illuminating but are not always helpful in making immediate decisions for ecosystem preservation or climate change mitigation. They are also difficult to test empirically since they are looking at outcomes in the far future.

Near-term ecological forecasting would provide predictions for outcomes that can be seen on a much smaller timescale, from weeks to years. These predictions will be able to be tested using data from the NEON project and other ecological observatory programs. As new data is fed into the predictive models, the models can be updated to improve the accuracy of forecasting.

As Michael explains in The Conversation, “focusing on near-term forecasts over spans of days, seasons and years will help us better understand, manage and conserve ecosystems. Developing this ability would be a win-win for both science and society.” He says open-access projects like the NEON program play a valuable role in providing large, long-term data to help advance the field of ecological forecasting. He published an ecological forecasting book and is leading a course this summer at Boston University.

You can find out more about Michael’s ongoing work on ecological forecasting at his website. Interested in the overlap between NEON and your own research? Checkout available NEON data, infrastructure and resources to support your research.

About Michael Dietze

Prof. Dietze is an Associate Professor in the Department of Earth and Environment at Boston University. His primary research area is ecological forecasting and the integration of field research and computer models. Recent work has focused on how climate change affects the terrestrial carbon cycle and biodiversity.

Share

Related Posts:

Unlocking the Secrets of Soil Microbial Metabolites

February 2, 2026

Petri dishes of bacteria cultures

Featured Expert: Tong Qiu - Mapping Forest Fecundity

October 31, 2025

Featured expert Tong Qiu headshot

Discontinuation of Select NEON Data Products

January 29, 2026

NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • About Us
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2026

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.