Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • About Us
    • Overview
      • Spatial and Temporal Design
      • History
    • Vision and Management
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups (TWGs)
    • FAQ
    • Contact Us
      • Contact NEON Biorepository
      • Field Offices
    • User Accounts
    • Staff
    • Code of Conduct

    About Us

  • Data & Samples
    • Data Portal
      • Explore Data Products
      • Data Availability Charts
      • Spatial Data & Maps
      • Document Library
      • API & GraphQL
      • Prototype Data
      • External Lab Data Ingest (restricted)
    • Data Themes
      • Biogeochemistry
      • Ecohydrology
      • Land Cover and Processes
      • Organisms, Populations, and Communities
    • Samples & Specimens
      • Discover and Use NEON Samples
        • Sample Types
        • Sample Repositories
        • Sample Explorer
        • Megapit and Distributed Initial Characterization Soil Archives
      • Sample Processing
      • Sample Quality
      • Taxonomic Lists
    • Collection Methods
      • Protocols & Standardized Methods
      • Airborne Remote Sensing
        • Flight Box Design
        • Flight Schedules and Coverage
        • Daily Flight Reports
          • AOP Flight Report Sign Up
        • Camera
        • Imaging Spectrometer
        • Lidar
      • Automated Instruments
        • Site Level Sampling Design
        • Sensor Collection Frequency
        • Instrumented Collection Types
          • Meteorology
          • Phenocams
          • Soil Sensors
          • Ground Water
          • Surface Water
      • Observational Sampling
        • Site Level Sampling Design
        • Sampling Schedules
        • Observation Types
          • Aquatic Organisms
            • Aquatic Microbes
            • Fish
            • Macroinvertebrates & Zooplankton
            • Periphyton, Phytoplankton, and Aquatic Plants
          • Terrestrial Organisms
            • Birds
            • Ground Beetles
            • Mosquitoes
            • Small Mammals
            • Soil Microbes
            • Terrestrial Plants
            • Ticks
          • Hydrology & Geomorphology
            • Discharge
            • Geomorphology
          • Biogeochemistry
          • DNA Sequences
          • Pathogens
          • Sediments
          • Soils
            • Soil Descriptions
        • Optimizing the Observational Sampling Designs
    • Data Notifications
    • Data Guidelines and Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
      • Usage Policies
    • Data Management
      • Data Availability
      • Data Formats and Conventions
      • Data Processing
      • Data Quality
      • Data Product Bundles
      • Data Product Revisions and Releases
        • Release 2021
        • Release 2022
        • Release 2023
        • Release 2024
        • Release-2025
      • NEON and Google
      • Externally Hosted Data

    Data & Samples

  • Field Sites
    • About Field Sites and Domains
    • Explore Field Sites
    • Site Management Data Product

    Field Sites

  • Impact
    • Observatory Blog
    • Case Studies
    • Papers & Publications
    • Newsroom
      • NEON in the News
      • Newsletter Archive
      • Newsletter Sign Up

    Impact

  • Resources
    • Getting Started with NEON Data & Resources
    • Documents and Communication Resources
      • Papers & Publications
      • Document Library
      • Outreach Materials
    • Code Hub
      • Code Resources Guidelines
      • Code Resources Submission
      • NEON's GitHub Organization Homepage
    • Learning Hub
      • Science Videos
      • Tutorials
      • Workshops & Courses
      • Teaching Modules
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Funding Opportunities

    Resources

  • Get Involved
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • Upcoming Events
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NEON Science Summit
      • NCAR-NEON-Community Collaborations
        • NCAR-NEON Community Steering Committee
    • Community Engagement
      • How Community Feedback Impacts NEON Operations
    • Science Seminars and Data Skills Webinars
      • Past Years
    • Work Opportunities
      • Careers
      • Seasonal Fieldwork
      • Internships
        • Intern Alumni
    • Partners

    Get Involved

  • My Account
  • Search

Search

Breadcrumb

  1. NEON Data Science Challenge: Identifying Trees Using Remote Sensing Data

NEON Data Science Challenge: Identifying Trees Using Remote Sensing Data

Canopy at HARV site

The view of Harvard Forest from the top of NEON's HARV meteorological/flux tower. Massachusetts.

December 2017

What’s the fastest way to count and identify individual trees in a landscape? Using remote sensing data and advanced analytics could help researchers gain new insights into how patterns in tree coverage and growth are changing over time. A team at the University of Florida is challenging the data science community to leverage NEON’s remote sensing data in the NIST-DSE Plant Identification with NEON Remote Sensing Data Challenge.

The challenge is sponsored by the National Institute of Standards and Technology (NIST) Data Science Evaluation (DSE) Series and the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative. It was organized by the Data Science Research lab, the WEecology lab, and Stephanie Bohlman’s lab at the University of Florida in active collaboration with NEON. The competition is made possible because of NEON’s airborne data, which is openly available to all researchers.

Participants will utilize data gathered from NEON’s Airborne Observation Platforms. Using sophisticated sensors mounted on low-flying aircraft, NEON collects numerous physical, biological and biochemical data points during annual flights over NEON field sites. The competition challenges data scientists to use this data to accurately classify, measure, and count trees on the ground.

The data points available to contest entrants include:

  • Airborne remote sensing: High-resolution hyperspectral imagery, high tecoloresolution RGB imagery, and LiDAR data on plant height.
  • Ground Data: Ground-based measurements of tree size, location and type.
  • Individual Tree Crowns: Ground-based identification of tree crowns on remote sensing imagery.

Using this data, entrants will need to perform the following tasks:

  • Crown Delineation: Estimate the size, shape and location of individual tree crowns.
  • Alignment: Pair trees measured on the ground with those identified in remote sensing.
  • Classification: Determine the species identity of each tree from remotely sensed data.

Using remote sensing data and data science methods could significantly reduce the time and costs of ecological research related to tree growth, range and biodiversity. Traditional on-the-ground observational data collection is time consuming and expensive, requiring extensive time and labor in the field. Remote sensing data could enable faster data collection and studies of much larger areas than are possible through field studies. However, in order to be useful, the data must be able to be used to accurately determine species, size, and location. The data science challenge uses both field-based and remote sensing data in order to validate the methods used to interpret the data from the airborne remote sensing platforms and demonstrate their utility to answer key research questions.

The competition is open to all, and can be entered by either individuals or teams. More information on the NIST-DSE Plant Identification with NEON Remote Sensing Data challenge can be found at www.ecodse.org. Entries must be received by December 15.

This year’s data science challenge is a pilot. The University of Florida team plans to work with NEON to run an expanded version of the challenge in 2018.

Related Content

Putting NEON Assets to Use for the Research Community
NEON and LTER Share Space and Data in Pacific Northwest
NEON and Texas A&M Consider Collaboration for Flux Data
NEON Construction on Track for 90% Completion by End of Year
Featured Expert: Dr. Stefan Metzger
NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • About Us
  • Newsroom
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2025

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.