Quantifying impacts of atmospheric and physical parameters on pyranometer calibration

Author: Justo Tarula (Junior, University of California, Riverside) Mentor: Janae Csavina

Background

Solar radiation is energy received from the sun in the form of near infrared radiation, visible light and a small amount of ultra-violet radiation. Solar radiation is an integral part of the surface energy budget and is the driving force behind biogeochemical processes in our environment. Solar radiation data is used in climate modeling (GCM) and development of renewable energy technologies. Solar radiation can be measured by its components:

- **Global** – a measure of total horizontal radiation, measured using a pyranometer
- **Direct** – does not get absorbed or scattered; measured using a pyrheliometer
- **Diffuse** – received after its direction has been changed by reflection and scattering; measured using a shaded pyranometer (excludes direct radiation)

Formula for calculating GHI:

\[
\text{GHI} = \text{DHI} + \text{DNI} \times \cos(\theta)
\]

This provides insight for ways to decrease uncertainty.

Study Objectives

- Chose global short-wave radiation as a proxy
 - Most radiation measurements by NEON are done by pyranometers
 - Can likely translate to long-wave radiation

Variables Studied:

- Humidity
- Particle Matter 2.5 (PM$_{2.5}$)
- Solar Radiation
- Visibility
- Zenith Angle

Uncertainty: NEON assessed uncertainty from reproducibility to be 0.613% of solar radiation sensors is seen best through histograms (A & B). It is clear that under level conditions (visual in C), the calibration factor follows a normal distribution (A). On the other hand, if not leveled properly (visual in D), it often follows more of a bi-modal distribution (B). Unleveled sensors can be determined by data through this method for both the calibration and data acquired from the field. Zenith angles were taken at 20 second resolution from clear sky data. Below is an example of one day (Figure 3A). Daily averages were computed for 11 days for VSI, PM$_{2.5}$ and humidity from CDPHE (2015) local area data and compared to calibration factor resulting from the clear sky portion of the day (Figure 3B, C, and D, respectively).

Results

Figure 3 a-d. Linear approximation between calibration coefficient and variables for zenith angle: A and visibility (VSI), PM$_{2.5}$, and humidity: B, C, and D, respectively.

The correlation coefficient (r) ranges from -1 (a perfect negative correlation) to 1 (a perfect positive correlation). In short, \(-1 \leq r \leq 1\).

The Pearson correlation coefficient, uncertainty and linear relationships were examined to determine impact to pyranometer calibrations.

Future Work

- Conduct analysis with more sensors to confirm consistency of results.
- Perform experiment at different times of the year.
- After results are confirmed develop a correction algorithm as a function of zenith angle to reduce uncertainty in solar radiation measurements (can be done for sensor specific correction at calibration or general sensor type correction).
- Thresholds for the other variables may be looked into again after corrections for zenith angle have been applied.

Conclusion

- Although several of the variables showed moderate correlations with the calibration factor, it is clear that the uncertainty attributed by the zenith angle is the largest contributor to the uncertainty associated with reproducibility and thus warrants further investigation.
- Special attention must be taken when placing pyranometers on calibration deck as well as on towers for data collection to ensure proper leveling of solar radiation sensors.

Contact Information: j.tarula@ucr.edu

References

© 2013 National Ecological Observatory Network, Inc. All rights reserved. The National Ecological Observatory Network is a project sponsored by the National Science Foundation and managed under cooperation agreement by NEON, Inc. This material is based upon work supported by the National Science Foundation under the following grants: DE-1029808, DE-1102158, DE-1032010 and DE-074307. Any opinions, findings, and conclusions or recommendations expressed in the materials are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.