

Open Access Soil, Meteorological, Surface Water, and Groundwater Data

1. A flux tower collects atmospheric data at terrestrial sites.

2. Primary precipitation is measured using a Double Fence Intercomparison Reference.

3. Sampling plots are located within, and outside of the tower footprint.

4. Automated instruments collect soil data at terrestrial sites.

Terrestrial Field Sites

NEON collects automated instrument data at 47 terrestrial field sites. Field sites are strategically located in distinct ecoclimatic regions across the United States.

Soil Sensor Arrays

NEON installs an array of five soil plots within or near the flux tower's footprint and in the locally dominant (1 km2 scale) soil type of each terrestrial field site. Soil plots are typically spaced up to 40 m apart. Sensors at these plots measure physical and chemical porperties of soil at various depths and soil heat flux at the soil surface.

Soil Mea	s and Frequencies	
1 Photosynthetically active	1Hz	4 CO ₂ concentrations
radiation (PAR)2 Net-shortwave &	1Hz	5 Soil temperature
net-longwave radiation	ILIT	6 Soil moisture & salinity
3 Precipitation	.5Hz	7 Heat flux

ational Ecological Observatory Network is a major facility fully funded by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the National Science Foundation. ©2023

5. Field scientists collect organismal data from select plants, animals, pathogens, and microbes.

6. A meteorological station collects atmospheric data at aquatic sites.

7. The Airborne Observation Platform (AOP) flies over most sites annually to collect remote sensing data.

8. Surface water and depth profile data are collected at streams, rivers, and lakes.

9. Groundwater wells capture changes in groundwater elevation, temperature, and specific conductance.

10. Buoy stations at lake sites collect data about surface water quality.

TERRESTRIAL SITES

(frequency/location)

Meteorological Measurements at Terrestrial & Aquatic Sites

Measurement Sensor Tower Top Lower Levels Soil 1 Hz Kipp and Zonen CMP22 Pyranometer (only core Global shortwave radiation sites) Direct and diffuse shortwave Delta-T Devices SPN1 Sunshine 1Hz \bigcirc radiation Pyranometer Net-shortwave and net-1Hz longwave radiation Hukseflux NR01 Net Radiometer \bigcirc (4-component) Kipp & Zonen PQS 1 PAR Quantum Photosynthetically Active 1Hz Sensor (additional downward-facing 1 Hz Radiation (PAR) sensor at tower top) Photosynthetically Active \bigcirc \bigcirc Licor LI-191-01 Quantum Line Sensor Radiation (PAR) - quantum lin Spectral sun photometer CIMEL Electronique - CE318N-EBS9 15 min \bigcirc calibrated sky radiances Thermometrics Climate RTD 100 Ω Probe, housed within a Met One 076B fan 1 Hz Air temperature 1 Hz aspirated radiation shield (triplet probes in tower top shield) Apogee SI-111 infrared (IR) temperature IR biological temperature 1 Hz \bigcirc sensor Vaisala HUMICAP Humidity and 1 Hz \bigcirc Relative humidity Temperature Probe - HMP 155 Vaisala - BAROCAP Digital Barometer \bigcirc 1 Hz Barometric pressure PTB330 Precipitation/Primary · Double Fence Intercomparison Belfort AEPG II 600M weighing gauge 0.1 Hz (20 sites) Reference (DFIR) Met One 372 tipping bucket On event (non-heated) and 379 tipping bucket Precipitation/Secondary \bigcirc (37 sites) (heated) Met One 372 tipping bucket \bigcirc Precipitation/Throughfall \bigcirc (non-heated) Gill - Wind Observer II; Extreme Weather Wind Observer; RM Young 05108- \bigcirc 2D wind speed and direction 1 Hz 45 Wind Monitor-HD Alpine (buoy); Honeywell HMR 3330 (buoy) 3D wind speed, direction Campbell Scientific. CSAT-3 3-D Sonic 20 Hz \bigcirc and sonic temperature Anemometer Xsens North America Inc. MTI-300-3D wind attitude and 2A5G4 Attitude Heading Reference 40 Hz \bigcirc motion reference Svstem CO₂ and H₂O LI-COR - LI7200 gas analyzer 20 Hz \bigcirc concentration & flux CO₂ and H₂O 1 Hz LI-COR - LI840A 1Hz concentration (storage/profile) CO₂atmospheric isotopes PICARRO - G2131-i isotopic CO, analyzer 1 Hz 1 Hz (storage/profile) 1 Hz H₂O atmospheric isotopes 1 Hz PICARRO - I2130-i isotopic H₂O analyzer (21 sites) (storage/profile) (21 sites) N- Con Systems Company Wet Wet deposition chemistry 2 wks \bigcirc Deposition Collector, Manufacture Model (37 sites) and precipitation isotopes No: NEON 00-127-7 Stardot NetCam SC CAM-SEC5IR-B 15 min 15 min \bigcirc Phenology images

> Additional measurements only at D10 & D13 terrestrial sites (MOAB, ONAQ, NIWO, RMNP, STER, CPER): Dust and particulate size distribution (TSI DustTrak model: 8533EP): 1 Hz; Particulate mass (Ecotech HiVol 3000): 2 wks

.1Hz .1Hz .1Hz .1Hz

AQUATIC SITES (frequency/location)					
l Array	On Bank Met Station	Above Wate Met Station			
\bigcirc	\bigcirc	\bigotimes			
\bigcirc	\bigcirc	\bigcirc			
z (only gwave)	1 Hz	30 s			
\bigotimes	1 Hz	30 s			
Hz	\bigcirc	\otimes			
\bigcirc	\bigcirc	\bigcirc			
\bigcirc	1 Hz	1 min			
Hz	\bigcirc	\bigcirc			
Hz	1 Hz	1 min			
\bigcirc	1 Hz	1 min			
	0.1 Hz (four sites)				
\bigcirc	On event (six sites)	\otimes			
/hen vent ccurs	\bigcirc	\bigcirc			
\bigcirc	1 Hz	~4 s			
\bigotimes	\bigcirc	\bigcirc			
\bigcirc	\bigcirc	\otimes			
\bigcirc	\bigcirc	\bigcirc			
\bigcirc	\bigotimes	\bigotimes			
\bigcirc	\bigcirc	\otimes			
\bigcirc	\bigcirc	\bigotimes			
\bigcirc	2 wks (seven sites)	\bigcirc			
\bigcirc	15	min			

15 min

QUICK FACTS ABOUT OUR AUTOMATED INSTRUMENTS

At terrestrial field sites:	At aqu
Meteorological and flux data are collected from flux towers have multiple levels of sensors.	Mete the wate
Five soil plots are placed in an	Surfa

Aquatic Field Sites

array near the tower.

NEON has 34 freshwater aquatic field sites, including 24 wadeable streams, seven lakes, and three non-wadeable rivers. Locations are representative of aquatic features and habitats typical of regions across the United States within each NEON Domain (excluding D20: Pacific Tropical) and near to NEON terrestrial field sites whenever feasible.

SENSOR STATION LOCATIONS BY AQUATIC SITE TYPE

Wadeable Stream

Non-Wadeable River

AUTOMATED INSTRUMENT MEASUREMENTS BY AQUATIC SITE TYPE

		Streams		Rivers		Lakes		
	Automated Instrument Measurements	Upstream U	Downstream	Buoy B	Near Bank	Buoy B	Littoral	
	PAR at water surface	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\bigotimes	
	PAR below water surface	\bigotimes	\bigotimes	\checkmark	\checkmark	\checkmark	\checkmark	
	Elevation of surface water (pressure transducer based)	\checkmark	\checkmark	\bigotimes	\checkmark	\bigotimes	\checkmark	
	Temperature in surface water	\checkmark	\checkmark	\bigotimes	\checkmark	\bigotimes	\checkmark	
	Temperature at specific depth in surface water (depths vary by site)	\bigotimes	\bigotimes	\checkmark	\bigotimes	\checkmark	\bigotimes	
	Water quality: specific conductivity, chlorophyll a, dissolved oxygen content, pH, turbidity, and fluorescent dissolved organic matter (fDOM)	✓ (no fDOM)	\checkmark	✓	\bigotimes	√	\bigotimes	
	Nitrate in surface water	\bigcirc	\checkmark	\checkmark	\bigcirc	\checkmark	\bigotimes	
	Groundwater wells: specific conductivity, water temperature, elevation of groundwater	Up to 8 per field site						
Μ	Meteorological measurements: wind speed and direction, air temperature, barometric pressure, relative humidity, shortwave radiation, and photosynthetically active radiation (PAR)	✓ One on bank		✓ One on bank, One on buoy		✓ One on bank, One on buoy		

uatic field sites:

teorological data are collected on bank at all aquatic sites above the ter at lake and river sites.

face water and groundwater data are collected.

Legend

Sensor Station

Water Chemistry Sampling

Groundwater Well

M Meteorological Station

Riparian Assessment

Reaeration Drip

 \triangle Rearation Sampling

Note: Fish, sediments, macroinvertebrates, zooplankton, plants, macroalgae, periphyton, and phytoplankton are sampled based on site-specific habitats and are not identified in the figures.

Lake

