COVID-19 Impacts on NEON Data Collection and Data Products, 2020

As described on the <u>Observatory Status</u> page, NEON operations were suspended from March 23, 2020, until May 18, 2020, or beyond, depending on safety conditions at each NEON field office and field site. Conditions continued to change at each site throughout 2020, impacting the amount of sampling and maintenance that could be safely performed at any given time, with impacts to operations continuing into 2021.

This page summarizes the impacts of the safety measures implemented in the face of major natural disasters to NEON data collection in 2020. The impacts described are primarily due to COVID-19. However, impacts from wildfires (Domain 17 California, Domain 16 Oregon, Domain 16 Washington, and Domain 13 Colorado), flooding (Domain 08 Alabama), and other causes are included to provide a complete picture of impacts to 2020 collections.

1 IMPACTS TO AQUATIC AND TERRESTRIAL OBSERVATION SYSTEM DATA PRODUCTS

Aquatic observations characterize channel and lake morphology, organism abundance and diversity, biogeochemistry, seasonal climatic and hydrologic changes, and riparian phenology. These data complement aquatic sensor data that capture hydrologic conditions and surface water and groundwater quantity and quality, as well as local atmospheric conditions and airborne remote sensing survey data. Overall, approximately 65% of the data were collected relative to the plan for Aquatic Observation System (AOS) data products in 2020 (Figure 1), with detailed impacts by aquatic data product listed in Table 1.

Terrestrial observations characterize plant phenology, diversity, biomass, and productivity, as well as the abundance, diversity, phenology, and (for some groups) pathogen status of organisms, including birds, small mammals, ticks, mosquitoes, ground beetles, and soil microbes. Biogeochemical measurements are made on plants and soils, with sampling designed to complement airborne remote sensing and soil sensor data sets. Overall, approximately 52% of the data were collected relative to the plan for Terrestrial Observation System (TOS) data products in 2020 (Figure 1), with detailed impacts by terrestrial data product listed in Table 2.

Some Observation System data products are only planned to be collected once every 5 years at each site, with only a subset of sites sampled for these products each year. The cross-site sampling schedule for the 5-year products has been revised to account for the sampling missed in 2020

to avoid 10-year gaps at any given site. Thus, the overall scientific impact of missed collections of these data products is lower than would be expected for annual products, given the rescheduling efforts (Figure 1).

Additional documentation on scientific design and methods for observational data products is available at <u>https://www.neonscience.org/data-collection/protocols-standardized-methods</u>.

Figure 1. Percent of planned data collection completed in 2020 for Observation System data products by sampling frequency (at least once annually or every 5-years at a site) and by Subsystem (Aquatic Observation System [AOS] or Terrestrial Observation System [TOS]), demonstrating the successful collection of over 50% of the planned data in the face of COVID-19. AOS collections were more complete than TOS due to the reduced effort generally required for AOS collections relative to TOS; AOS data collection can be completed with smaller teams and shorter sampling windows.

Table 1. Percentage of planned data collection completed in 2020 for Aquatic Observation System data products; lower values are due to impacts of COVID-19, fires, and flooding. AOS data products collected approximately every 5 years at each site are indicated with an asterisk in the name. Fish sampling was the most impacted data product, as it typically requires large (4-6 person) teams to complete and therefore was not feasible in many locations during periods when COVID-19 safety precautions dictated teams of 2.

			Percent
Data Product ID	Data Product Name	Data Product Description	complete
		Carbon (C) and nitrogen (N) concentrations of aquatic plant	
	Aquatic plant bryophyte chemical	and bryophytes from benthic collections in lakes, rivers, and	
DP1.20063.001	properties	wadeable streams	61%
		Dry weight of aquatic plant, bryophyte, and macroalgae	
	Aquatic plant bryophyte	from benthic quadrats in lakes, rivers, and wadeable	
DP1.20066.001	macroalgae clip harvest	streams	61%
	Aquatic plant, bryophyte, lichen,		
	and macroalgae point counts in	Point counts of aquatic plants, bryophytes, lichens, and	
DP1.20072.001	wadeable streams	macroalgae from transects in wadeable streams	61%
		Counts and relative abundances of archaeal, bacterial, and	
	Benthic microbe community	fungal taxa observed in benthic microbial communities from	
DP1.20086.001	composition	wadeable streams	58%
		Counts and relative abundances of marker genes from total	
		archaea, bacteria, and fungi observed by qPCR in benthic	
DP1.20277.001	Benthic microbe group abundances	microbial communities	58%
	Benthic microbe marker gene	DNA sequence data from ribosomal RNA marker genes from	
DP1.20280.001	sequences	benthic samples	58%
	Benthic microbe metagenome		
DP1.20279.001	sequences	Metagenomic sequence data from benthic samples	58%
	Chemical properties of	Grab samples of groundwater chemistry including general	
DP1.20092.001	groundwater	chemistry, anions, cations, and nutrients.	78%
	Chemical properties of surface	Grab samples of surface water chemistry including general	
DP1.20093.001	water	chemistry, anions, cations, and nutrients.	68%
		Measurements of water column temperature and depth	
DP1.20254.001	Depth profile at specific depths	profile in non-wadeable streams and lakes	68%

		Discharge measurements from field-based surveys	
		(provides inputs to DP4.00133 Stage-discharge rating curves	
DP1.20048.001	Discharge field collection	and DP4.00130 Continuous discharge)	61%
		Grab samples of surface water dissolved gases including	
DP1.20097.001	Dissolved gases in surface water	carbon dioxide, methane, and nitrous oxide	68%
		Counts of fish from electrofishing surveys in wadeable	
		streams, or electrofishing, gill netting, and/or fyke netting	
	Fish electrofishing, gill netting, and	surveys in lakes. Includes fish standard length and individual	
DP1.20107.001	fyke netting counts	mass	31%
		CO1 DNA sequences from select fish in lakes and wadeable	
DP1.20105.001	Fish sequences DNA barcode	streams	47%
		Collection of benthic macroinvertebrates using multiple	
DP1.20120.001	Macroinvertebrate collection	sampling methods in lakes, rivers, and wadeable streams	73%
		CO1 DNA sequences of the aquatic macroinvertebrate	
DP1.20126.001	Macroinvertebrate metabarcoding	community	73%
		Carbon (C), nitrogen (N), phosphorus (P), isotopes,	
		chlorophyll a, and pheophytin of periphyton and	
	Periphyton, seston, and	phytoplankton from benthic and water column samples in	
DP1.20163.001	phytoplankton chemical properties	lakes, rivers, and wadeable streams	68%
		Collection and biomass of periphyton and phytoplankton	
	Periphyton, seston, and	using multiple benthic and water column sampling methods	
DP1.20166.001	phytoplankton collection	in lakes, rivers, and wadeable streams	68%
		Field and external laboratory data from the salt-tracer and	
		gas injection field reaeration measurements, including	
		stream widths, inert gas concentrations, conservative tracer	
DP1.20190.001	Reaeration field and lab collection	concentrations, and conductivity times series.	57%
		Assessment of riparian vegetation composition and physical	
		structure in lakes, non-wadeable streams, and wadeable	
DP1.20275.001	Riparian composition and structure	streams	50%
		Assessment of riparian vegetation percent cover in	
DP1.20191.001	Riparian vegetation % cover	wadeable streams	52%
		Discharge measured using a constant-rate addition salt	
DP1.20193.001	Salt-based stream discharge	tracer during reaeration measurements	57%

		Measurement of water column Secchi depth in non-	
DP1.20252.001	Secchi depth	wadeable streams and lakes	68%
		Field collection and analysis of nutrients, carbon, inorganic	
		and organic contaminants in sediments of wadeable	
DP1.20194.001	Sediment chemical properties	streams, rivers, and lakes	64%
		Field collection and analysis of size and texture of sediments	
DP1.20197.001	Sediment physical properties	in wadeable streams, rivers, and lakes	64%
DP1.20276.001	Stable isotopes in groundwater	Grab samples for stable isotopes of water in groundwater	78%
		Grab samples for stable isotope chemistry including water	
		and particulate organic matter, in lakes, rivers, and	
DP1.20206.001	Stable isotopes in surface water	wadeable streams	68%
		Cell counts from surface water microbial collection in lakes,	
DP1.20138.001	Surface water microbe cell count	wadeable streams, and non-wadeable streams	63%
		Counts and relative abundances of archaeal, bacterial, and	
	Surface water microbe community	fungal taxa observed in surface water microbial	
DP1.20141.001	composition	communities in lakes, rivers and streams	63%
		Counts and relative abundances of marker genes from total	
	Surface water microbe group	archaea, bacteria, and fungi observed by qPCR in surface	
DP1.20278.001	abundances	water microbial communities	63%
	Surface water microbe marker	DNA sequence data from ribosomal RNA marker genes from	
DP1.20282.001	gene sequences	surface water samples	63%
	Surface water microbe		
DP1.20281.001	metagenome sequences	Metagenomic sequence data from surface water samples	63%
		Collection of zooplankton from water column samples in	
DP1.20219.001	Zooplankton collection	lakes	100%
DP1.20221.001	Zooplankton metabarcoding	CO1 DNA sequences of the zooplankton community	100%
		Bathymetry of lake bottoms and non-wadeable streams for	
		detecting environmental change as well as for determining	
	Bathymetric and morphological	lake morphology, estimating primary productivity, habitat	
DP4.00132.001	maps*	features, and water quality.	86%
		Map showing the morphology of streams. These maps	
		denote topography of the stream basin as well as location	
		of the thalweg, coarse woody debris, gravel/sand bars, and	
DP4.00131.001	Stream morphology map*	other features of interest.	67%

Table 2. Percentage of planned data collection completed in 2020 for Terrestrial Observation System data products; lower values are primarily due to impacts of COVID-19, fires, and flooding. Data products collected approximately every 5 years at each site are indicated with an asterisk in the name. Small mammal sampling was one of the most impacted data products, as it typically requires large (4-6 person) teams to complete and therefore was not feasible in many locations during periods when COVID-19 safety precautions dictated teams of 2. Tick and mosquito sampling were also significantly impacted, as these sampling efforts were not prioritized at sites with historically low capture rates. A minimum number of plots were prioritized for herbaceous clip harvest; thus, some data were collected at many sites, but the percent complete is low as it represents percentage of total plots expected.

Data Product			Percent
ID	Data Product Name	Data Product Description	complete
		Count, distance from observer, and	
	Breeding landbird	taxonomic identification of breeding	
DP1.10003.001	point counts	landbirds observed during point counts	83%
	Coarse downed wood	Raw bulk density measurements of coarse	
DP1.10014.001	bulk density sampling*	downed wood >= 2 cm diameter	56%
	Coarse downed wood	Tally and raw measurement of coarse	
DP1.10010.001	log survey*	downed wood >= 2 cm diameter	39%
	Digital hemispheric		
	photos of plot	Upward and/or downward facing digital	
	vegetation -	180-degree images of vegetation in plots	
DP1.10017.001	Distributed plots*	used to calculate leaf area index	52%
	Digital hemispheric		
	photos of plot	Upward and/or downward facing digital	
	vegetation - Tower	180-degree images of vegetation in plots	
DP1.10017.001	plots	used to calculate leaf area index	41%
	Ground beetle		TBD (not
	sequences DNA	CO1 DNA sequences from select ground	yet
DP1.10020.001	barcode	beetles	processed)
	Ground beetles	Taxonomically identified ground beetles	
	sampled from pitfall	and the plots and times from which they	
DP1.10022.001	traps	were collected.	40%

		Dry weight of herbaceous vegetation	
	Herbaceous clip	harvested from individual clip strips, by	
DP1.10023.001	harvest	functional type	31%
			Annual
		Dry weight of litterfall and fine woody	production
	Litterfall and fine	debris collected from elevated and ground	60%;
	woody debris	traps, sorted to functional group, as well as	5-year
	production and	periodic measurements of litter chemistry	chemistry
DP1.10033.001	chemistry*	and stable isotopes	57%
	Mosquito sequences	CO1 DNA sequences from select	
DP1.10038.001	DNA barcode	mosquitoes	100%
	Mosquito-borne	Presence/absence of a pathogen in a single	
DP1.10041.001	pathogen status	mosquito sample (pool)	36%
		Taxonomically identified mosquitoes and	
	Mosquitoes sampled	the plots and times from which they were	
DP1.10043.001	from CO2 traps	collected	47%
	Non-herbaceous	Field measurements of individual non-	
	perennial vegetation	herbaceous perennial plants (e.g. cacti,	
DP1.10045.001	structure	ferns)	38%
		Traits of sun-lit canopy plants reported at	
		the level of the individual (woody plants) or	
DP1.10026.001	Plant foliar traits	community (herbaceous plants).	65%
	Plant phenology	Phenophase status and intensity of tagged	
DP1.10055.001	observations	plants	38%
		Plant species cover-abundance and	
		presence observed in multi-scale plots.	
		Plant species and associated percent cover	
		in 1m2 subplots and plant species presence	
		in 10m2 and 100m2 subplots are reported	
		from 400m2 plots. Archived plant vouchers	
	Plant presence and	and foliar tissue support the data and	
DP1.10058.001	percent cover	additional analyses.	57%
	Rodent-borne	Presence/absence of a pathogen (or	NA
DP1.10064.001	pathogen status	antibodies to a pathogen) in each single	(planned

		rodent sample. From 2014-2019 samples	pilot year
		were tested for hantaviruses and, starting in	for tick
		2020, they will be tested for tick-borne	pathogens
		pathogens.	only)
		Fine root biomass to 30cm depth via soil	
		core sampling. Includes root carbon (C) and	
	Root biomass and	nitrogen (N) concentrations and stable	
DP1.10067.001	chemistry, periodic*	isotopes.	62%
		Individual- and trap-level data collected	
	Small mammal box	using box traps designed to capture small	
DP1.10072.001	trapping	mammals	37%
	Small mammal		
	sequences DNA	CO1 DNA sequences from select small	
DP1.10076.001	barcode	mammals	50%
		Soil inorganic nitrogen concentrations from	
		the top 30 cm of the profile. Data are	
		reported by horizon (organic vs. mineral)	
		within a soil core. Data from incubated	
	Soil inorganic nitrogen	samples can be used to estimate rates of	
	pools and	net nitrogen mineralization and net	
DP1.10080.001	transformations*	nitrification	47%
		Quantitative abundance of microbes in soil	
DP1.10104.001	Soil microbe biomass	samples	58%
	Soil microbe	Counts and relative abundances of archaeal,	
	community	bacterial, and fungal taxa observed in soil	
DP1.10081.001	composition	microbial communities	58%
		Counts and relative abundances of marker	
		genes from total archaea, bacteria, and	
	Soil microbe group	fungi observed by qPCR in soil microbial	
DP1.10109.001	abundances	communities	58%
	Soil microbe marker	DNA sequence data from ribosomal RNA	
DP1.10108.001	gene sequences	marker genes from soil samples	58%

	Soil microbe		
	metagenome	Metagenomic sequence data from soil	
DP1.10107.001	sequences	samples	58%
		Soil physical and chemical properties from	
		the top 30 cm of the profile from periodic	
		soil core collections. Data are reported by	
	Soil physical and	horizon (mineral vs. organic). See initial	
	chemical properties,	characterization and megapit products for	
DP1.10086.001	periodic*	additional soil data.	60%
	Tick-borne pathogen	Presence/absence of a pathogen in each	
DP1.10092.001	status	single tick sample	37%
		Abundance and density of ticks collected by	
	Ticks sampled using	drag and/or flag sampling (by species	
DP1.10093.001	drag cloths	and/or lifestage)	37%
		Structure measurements, including height,	
		crown diameter, and stem diameter, as well	
	Woody plant	as mapped position of individual woody	
DP1.10098.001	vegetation structure	plants	60%

2 IMPACTS TO AIRBORNE OBSERVATION PLATFORM DATA PRODUCTS

The Airborne Observation Platform (AOP) conducts remote sensing surveys over areas where NEON's observational and instrumented sampling is occurring and allows relationships to be drawn between NEON's detailed *in situ* observations to the broader environmental and ecological conditions.

Following the restart of operations in May 2020 after suspension of planned flights on March 23, 2020, flights were replanned to conduct campaigns that could be efficiently reached without requiring commercial air travel for the sensor operators. Collections over 6 Domains originally planned to be sampled were cancelled, while 3 Domains were *added* to the 2020 flight plan (Figure 2). A total of 7 domains were flown successfully in 2020, representing approximately 58% of the pre-COVID-19 plan (i.e., 12 domains). All 28 AOP data products derived from the aircraft were equally impacted by COVID-19 and were successfully completed for all flown domains, with minor impacts of non-COVID related issues. The field spectra data product, the AOP data product not generated from aircraft observations, was rescheduled from YELL to RMNP in 2020 to limit travel for AOP scientists.

Additional documentation on scientific design and methods for airborne remote sensing data products is available at https://www.neonscience.org/data-collection/airborne-remote-sensing.

Figure 2. Map of the AOP 2020 flight campaign indicating the domains with data successfully collected relative to the pre-COVID-19 plan; domains close to NEON Headquarters in D10 were prioritized to reduce travel for airborne sensor operators. Approximately 58% of the planned data was collected in 2020, due to the shortened flight season and safety precautions taken in the face of COVID-19.

3 IMPACTS TO AQUATIC AND TERRESTRIAL INSTRUMENT SYSTEM DATA PRODUCTS

At aquatic field sites, NEON deploys *in situ* sensor stations to collect surface water quality, temperature, and depth measurements, groundwater wells, a riparian meteorological station, precipitation gauges, and phenocams. At terrestrial field sites, NEON deploys a micrometeorological tower, a soil sensor array, precipitation gauges, and phenocams. Additional documentation on scientific design and methods for instrument system data products is available at <u>https://www.neonscience.org/data-collection/automated-instruments</u>.

Routine maintenance and field calibration were interrupted starting in March 2020, with Observatory staff responding only to issues prioritized based on the potential for damage to infrastructure. Multiple NEON field offices restarted operations on May 18, 2020 and were able to resume calibration of aquatic sensors to restore data streams to expected accuracy. We expanded our response strategy in mid-June for sites that remained closed to allow staff to respond to site outages to restore power and communications and conduct corrective maintenance on high priority sensors. The expanded strategy did not include routine (monthly) field calibrations of sonde or SUNA sensors in Domains that remained closed due to COVID-19 conditions. Wildfires in Colorado, California, Oregon and Washington also impacted site access and our ability to maintain sensor systems in fall 2020.

In a year without natural disasters, sensor uptime is expected to be around 90% due to impacts of local utility power outages, scheduled maintenance, and routine equipment failure. In 2020, the reduced maintenance and field calibrations described above, combined with COVID-19 impacts on the suppliers for sensors and associated parts that reduced availability and delayed shipments, further negatively impacted the uptime of a number of sensors. Aquatic Instrument System (AIS) data products were more significantly impacted than Terrestrial Instrument System (TIS) data products (70% vs. 89%; Figure 3), due to a subset of sites that were not able to be restored following vandalism, flooding damage, or fuel cell power failures that occurred in 2020. Uptimes by instrument system data product are detailed in Tables 3 and 4 below.

Figure 3. Percent uptime in 2020 for Instrument System data products by Site Type (Aquatic vs. Terrestrial) and by sensor set (meteorological (met) and in-water/in-soil sensors) vs. Surface-Atmosphere Exchange sensors [SAE]), demonstrating the continued collection of a majority of IS data in the face of COVID-19. Aquatic instruments were more significantly impacted than terrestrial instruments due to a subset of sites that were not able to be restored following vandalism, flooding damage, or fuel cell power failures that occurred in 2020.

Table 3. Percent uptime of sensors in 2020 for Aquatic Instrument System data products, with relatively low availability primarily due to impacts of COVID-19, as well as fires, power, and flooding at a subset of sites. Specifically, the on-buoy and other buoy-deployed data products (e.g., DP1.20264.001 Temperature at specific depth in surface water) were the most impacted, given the delays in restoring the damaged buoys at D03 FLNT, D08 TOMB and D08 BLWA due to COVID-19.

				Percent
Raw Data		Published Data	Published Data Product	uptime
Stream ID	Raw Data Stream Name	Product ID(s)	Name (if different)	2020
DP0.00001	2D Wind Speed and Direction	DP1.00001.001		85%
	Single Aspirated Air			
DP0.00002	Temperature	DP1.00002.001		84%
DP0.00004	Barometric Pressure	DP1.00004.001		87%
DP0.00006	Precipitation	DP1.00006.001		48%
	Shortwave and longwave			
DP0.00023	radiation (net radiometer)	DP1.00023.001		88%
	Photosynthetically active			
DP0.00024	radiation (PAR)	DP1.00024.001		88%
DP0.00098	Relative humidity	DP1.00098.001		85%
	Barometric pressure above			
DP0.20004	water on-buoy	DP1.20004.001		54%
DP0.20005	Water Quality	DP1.20288.001		73%
			Specific conductivity in	
			groundwater;	
	Specific conductivity,	DP1.20015.001;	Temperature of	
	temperature, and elevation of	DP1.20217.001;	groundwater; Elevation of	
DP0.20015	groundwater	DP1.20100.001	groundwater	75%
DP0.20016	Elevation of surface water	DP1.20016.001		81%
	Shortwave and longwave			
	radiation above water on-			
DP0.20032	buoy (net radiometer)	DP1.20032.001		47%
DP0.20033	Nitrate in surface water	DP1.20033.001		64%
	Photosynthetically active			
DP0.20042	radiation at water surface	DP1.20042.001		79%
	Temperature (PRT) in surface			
DP0.20053	water	DP1.20053.001		82%
	Windspeed and direction			
DP0.20059	above water on-buoy	DP1.20059.001		49%
	Photosynthetically active			
DP0.20261	radiation below water surface	DP1.20261.001		61%

	Temperature at specific depth			
DP0.20264	in surface water	DP1.20264.001		41%
			Relative humidity above	
	Relative humidity and		water on-buoy; Air	
	temperature above water on-	DP1.20271.001;	temperature above water	
DP0.20271	buoy	DP1.20046.001	on-buoy	50%

Table 4. Percent uptime of sensors in 2020 for Terrestrial Instrument System (TIS) data products, demonstrating relatively limited impacts of COVID-19. Precipitation was the most impacted TIS data product, as primary precipitation sensors (weighing gauge housed within a small double fence intercomparison reference; DP1.00006) that use hazardous chemicals were covered and shut down during the temporary suspension of operations at sites with risk of overflow to avoid environmental contamination.

				Percent
Raw Data		Published Data	Published Data Product	uptime
Stream ID	Raw Data Stream Name	Product ID(s)	Name (if different)	2020
DP0.00001	2D Wind Speed and Direction	DP1.00001.001		92%
	Single Aspirated Air			
DP0.00002	Temperature	DP1.00002.001		93%
	Triple Aspirated Air			
DP0.00003	Temperature	DP1.00003.001		93%
DP0.00004	Barometric Pressure	DP1.00004.001		94%
DP0.00005	IR Biological Temperature	DP1.00005.001		94%
DP0.00006	Precipitation	DP1.00006.001		75%
	Shortwave radiation (direct			
DP0.00014	and diffuse pyranometer)	DP1.00014.001		96%
	Dust and particulate size			
DP0.00017	distribution	DP1.00017.001		82%
	Shortwave radiation (primary			
DP0.00022	pyranometer)	DP1.00022.001		94%
	Shortwave and longwave			
DP0.00023	radiation (net radiometer)	DP1.00023.001		94%
	Photosynthetically active			
DP0.00024	radiation (PAR)	DP1.00024.001		95%

DP0.00040	Soil heat flux plate	DP1.00040.001		94%
DP0.00041	Soil temperature	DP1.00041.001		83%
	Photosynthetically active			
DP0.00066	radiation (quantum line)	DP1.00066.001		94%
	Soil water content and water			
DP0.00094	salinity	DP1.00094.001		80%
DP0.00095	Soil CO2 concentration	DP1.00095.001		91%
DP0.00098	Relative humidity	DP1.00098.001		91%
	3D wind speed, direction and		Bundled data products -	
DP0.00007	sonic temperature	DP4.00200.001	eddy covariance	89%
	ECTE Infrared Gas Analzer		Bundled data products -	
DP0.00016	(Turbulent CO2 & H2O)	DP4.00200.001	eddy covariance	89%
			Bundled data products -	
DP0.00102	Atmospheric CO2 Isotope	DP4.00200.001	eddy covariance	85%
			Bundled data products -	
DP0.00103	Atmospheric H2O isotopes	DP4.00200.001	eddy covariance	87%
	ECSE profile CO2 & H2O		Bundled data products -	
DP0.00105	concentration (storage)	DP4.00200.001	eddy covariance	70%
	ECSE profile mass flow		Bundled data products -	
DP0.00106	controller (sampling)	DP4.00200.001	eddy covariance	95%
			Bundled data products -	
DP0.00108	ECSE profile mass flow meter	DP4.00200.001	eddy covariance	93%