

neon | National Ecological Observatory Network

AIRBORNE REMOTE SENSING

FOR A BETTER VIEW OF ECOLOGICAL CHANGE, GET HIGHER.

Climate change, human land use, invasive species and natural disasters such as fires or hurricanes are changing the face of the earth. The NEON Airborne Observation Platform (AOP) provides high-resolution data to precisely measure those changes across the 81 sites.

Battelle is pleased to support the National Ecological Observation Network (NEON), a continental-scale research program gathering data from 81 field sites across the United States. Data collected through the NEON project are freely available to researchers.

WHAT WE MEASURE

NEON's Airborne Observation Platforms provide highresolution measurements of numerous physical, biological and biochemical properties. Data from the AOP build a robust time series of landscape-scale changes in metrics such as vegetation cover and density, canopy chemistry and topography. Measurements include:

- Vegetation cover and dominant vegetation type
- Vegetation structure including height and Leaf Area Index (LAI)

- Vegetation condition
- Vegetation biochemistry and heterogeneity
- Canopy chemistry (nitrogen index)
- Topography, such as elevation, slope and aspect
- Total biomass
- Vegetation greenness and health (Normalized Difference Vegetation Index [NDVI], Enhanced Vegetation Index [EVI]).

These data can be used to derive many key indicators of ecological health and changing ecosystems, including:

- Ecosystem structure
- Ground elevation (Digital Elevation Model [DEM])
- Digital Surface Model (DSM).

Proudly operated by

BRIDGING THE GAPS BETWEEN SATELLITE AND SITE-BASED DATA

The AOP is a suite of sensors mounted into a small airplane that includes a hyperspectral imaging spectrometer, a full-waveform and discrete-return Light Detection and Ranging (LiDAR), and a high-resolution Red-Green-Blue (RGB) camera.

The NEON AOP can collect regional data at lower altitudes, vielding data of much higher resolution than a satellite and from broader areas than a handheld instrument could capture. AOP data provide an essential data set to help researchers better understand and compare satellitederived remote sensing data to ground-collected data. In addition, AOP data may be combined with field-based NEON measurements to estimate ground and atmospheric conditions across sites. Field technicians strategically collect organismal data at individual plots throughout the growing season, and automated instruments continuously collect atmospheric, soil and aquatic data within each field site. Examples of AOP data used in coordination with other NEON measurements include:

 In situ and sensor data combined with AOP measurements. to enable scientific study of continental-scale patterns and processes

- Vegetation indices created at both the native sensor resolution at spectral and spatial resolutions that closely match existing MODIS and Landsat satellite-derived vegetation index products
- AOP data from other organizations used to fill in gaps between NEON sites or where NEON data do not exist to address ecological questions at regional and continental scales.

COLLECTION AREAS. TIME AND DATA RESOLUTION

Field operators conduct airborne observation surveys annually over NEON terrestrial and aquatic sites, covering a minimum area of 10 by 10 kilometers, including coverage of all field sampling plots and automated instruments and often extending to the surrounding watershed. The average AOP flying altitude of 1,000 meters above ground level provides seamless hyperspectral and gridded LiDAR remote sensing data products at approximately 1-meter spatial resolution and digital photography at approximately 0.25-meter resolution. Flights are scheduled during the growing season, at or close to the time of peak vegetation greenness.

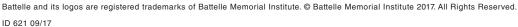
Hyperspectral Imaging Spectrometer

reflected off the ground. Data

Full Waveform and Discrete **Return Light Detection and** Ranging (LiDAR)

a LiDAR system can be used and to map buildings, power

(RGB) Camera


About the NEON project

The NEON project is a continental-scale ecological network, sponsored by the National Science Foundation and operated by Battelle, that gathers and synthesizes data on the impacts of climate change, land use change and invasive species on natural resources and biodiversity. The network of ecological sites collects high-quality data from 81 field sites (47 terrestrial and 34 aquatic) across the U.S. (including Alaska, Hawaii and Puerto Rico). Data collection methods are standardized across sites and include in situ instrument measurements, field sampling and airborne remote sensing. Field sites are strategically selected to represent different regions of vegetation, landforms, climate and ecosystem performance. Access to the NEON databases and resources are freely available to enable users to tackle scientific questions at scales not accessible to previous generations of scientists.

About Battelle

Every day, the people of Battelle apply science and technology to solving what matters most. At major technology centers and national laboratories around the world, Battelle conducts research and development, designs and manufactures products, and delivers critical services for government and commercial customers. Headquartered in Columbus, Ohio since its founding in 1929, Battelle serves the national security, health and life sciences, and energy and environmental industries. For more information, visit www.battelle.org.

720.746.4844 | neonscience@battelleecology.org | www.neonscience.org

