Papers and Publications

Export 67 results:
[ Author(Desc)] Keyword Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kelly, E. F. & Loescher, H. W. NEON Reboot. BioScience 66, 711 - 711 (2016).
Kingdon, A., Giles, J. R. A. & Lowndes, J. P. Future of technology in NERC data models and informatics: outputs from InformaTEC. Geological Society, London, Special Publications 408, 245 - 253 (2017).
Knox, S. Helen et al. Using digital camera and Landsat imagery with eddy covariance data to model gross primary production in restored wetlands. Agricultural and Forest Meteorology 237-238, 233 - 245 (2017).
Koop-Jakobsen, K., Powers, L., Huber, R., Waldmann, C. & Loescher, H. W. COOPEUS – Building the framework for information exchange between the US and EU Environmental Research Infrastructures. iLEAPs Newsletter 14, 31-32 (2014).
Kosmala, M. et al. Season Spotter: Using Citizen Science to Validate and Scale Plant Phenology from Near-Surface Remote Sensing. Remote Sensing 8, 726 (2016).
Kuhlman, M. R. et al. A New Engagement Model to Complete and Operate the National Ecological Observatory Network. The Bulletin of the Ecological Society of America 97, 283 - 287 (2016).PDF icon Kuhlman_et_al-2016-The_Bulletin_of_the_Ecological_Society_of_America.pdf (80.44 KB)
Kunwor, S., Starr, G., Loescher, H. W. & Staudhammer, C. L. Preserving the variance in imputed eddy-covariance measurements: Alternative methods for defensible gap filling. Agricultural and Forest Meteorology 232, 635 - 649 (2017).
M
Mahecha, M. D. et al. Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14, 4255 - 4277 (2017).
Mahecha, M. D. et al. Detecting impacts of extreme events with ecological in-situ monitoring networks. Biogeosciences Discussions (2017). doi:10.5194/bg-2017-130
Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Scientific Reports 7, (2017).
Metzger, S. et al. Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2. Atmospheric Measurement Techniques 9, 1341 - 1359 (2016).
Metzger, S. et al. eddy4R: A community-extensible processing, analysis and modeling framework for eddy-covariance data based on R, Git, Docker and HDF5. Geoscientific Model Development Discussions 1 - 26 (2017). doi:10.5194/gmd-2016-318
Metzger, S. et al. Optimization of a gas sampling system for measuring eddy-covariance fluxes of H2O and CO2. Atmospheric Measurement Techniques Discussions 8, 10983 - 11028 (2015).
Metzger, S. et al. eddy4R 0.2.0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on R, Git, Docker, and HDF5. Geoscientific Model Development 10, 3189 - 3206 (2017).
Metzger, S. Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations. Agricultural and Forest Meteorology (2017). doi:10.1016/j.agrformet.2017.08.037
Munger, J. W., Loescher, H. W. & Luo, H. The Eddy Covariance Handbook, Eds. M. Aubinet, T. Vesala, D. Papale. 22-53 (Springer Verlag Pub, 2012).

Pages

Dialog content.